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1980

1988

2005

2011

Time-Reversal Symmetry broken 
External B (2D), low Tº

Time-Reversal Symmetry broken 
Intrinsic magnetism (2D)

Time-Reversal preserved 
Strong SOC, 2D and 3D

Mirror symmetry

Quantum Hall effect (edge states) 

Chern insulators (edge states)

Quantum spin Hall effect

3D TIs

3D TCIs

Topology and symmetry

K. v. Klitzinget 1980, Haldane 1988, Kane and Mele 2005, Liang Fu 2011



Altland- 
Zirnbauer 
Random  
Matrix 
Classes

Topological classification 
before crystalline symmetries

Time Reversal  

Particle - Hole   

Chiral symmetry 

1( ) ( ) 12 ;    H H−Ξ Ξ = − − Ξ = ±k k

1( ) ( ) 12 ;   H H−Θ Θ = + − Θ = ±k k

1( ) ( )H H−Π Π = − Π ∝ΘΞk k  ;   

Ryu, Schnyder, Furusaki, Ludwig New J. Phys. 12, 065010 (2010)



C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005)

Unstoppable currents, constant conductivity, spin-momentum locking (in 2D and 3D) 
Independent of size, weak disorder and temperature 

@quantumfracture
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Materials for 
future Quantum  

Technologies

Quantum 
Computers

Energy  
conversion 

Dark Matter 
detectors 

Environmentally  
friendly 

 technology

Quantum Anomalous Hall 
Topological Surface States

Non-abelian anyons 
Fractional TIs

Photovoltaics 
Catalysis

Chirality + topology 
Dark Matter detectors



Example: Z2 invariant in 2D and 3D Topological Insulators (protected by TRS) 
Band theory (Fu, Kane & Male (2007), Moore and Balents (2007), Roy (2007)

Topology from Wilson loops

kx

ky

kz

Wnm(kx, ky) = exp

Z 2⇡

0
dkzhum(~k)|@kz |un(~k)i

�

occupied band 
eigenstatesunitary operator in filled 

band subspace

Define ‘Wilson loop Hamiltonian’ W (kx, ky) = exp[�iHW(kx, ky)]

Resembles surface Hamiltonian with 
qualitatively identical gapless spectrum 
(single Dirac cone) kx

ky

�(W )
⇡

�⇡
�(W )

⇡

�⇡

Equivalence: eigenvalues of Wilson loop and 
projected position operator P̂ x̂P̂

Topological classification 
before crystalline symmetries



(�1)⌫ = ⇧�i = ±1

⌫ =
-1 topological insulator 
1   trivial insulator⎨

Band inversion criteria



(�1)⌫ = ⇧�i = ±1

Band inversion criteria

Example: Z2 invariant in 2D and 3D Topological Insulators (protected by TRS) 
Band theory (Fu, Kane & Male (2007), Moore and Balents (2007), Roy (2007)



2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Prediction  
HgTe 2D TI

3D TIs theory + exp  
protected by TRS : Bi2Se3

Bernevig Science (2006) 
König Science (2007)

Mirror Chern 
insulators

Weyl  
semimetals

Type II Weyls

Nodal Lines

Non-symmorphic TIsDirac semimetals

QAHE

High Order TIs

New 
Fermions

2018

Hsieh Nature (2008) 
Zhang Nat Phys (2009) 
Xia Nat Phys (2008)

Chang Science (2013)

Weng PRX (2015) 
Xu Science (2015)

Bradlyn (2016)

Soluyanov (2015) Schindler (2018)

Alexandrinata (2016)
Hsieh Nat Comm (2012) 
Tanaka Nat Phys (2012)

Bzdušek (2016)

Kane & Mele, PRL (2015)

Topological materials
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Topological materials
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2018 (40 years) 
~300 topological materials 

Topological materials



Image: 1605.06824 Ma et al

Ingredients:
• unit lattice translations (𝚭3)

• point group operations (rotations, reflections)
• non-symmorphic (screw, glide)
• orbitals
• atoms in some lattice positions

{

230
Space-Groups

Crystal Structure



Nature  (2017) 
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R

( )R rϕ

r
Wannier states associated with R are 
localized, but gauge dependent.

Bloch states                                are defined for periodic boundary conditions
Define localized Wannier States :

( )( )
2 2

ikR ik R r
k kBZ BZ

dk dkR e e uϕ ψ
π π

− − −= =∫ ∫! !

( ) ( )ikr
k kr e u rψ =

Vanderbilt and Soluyanov PRB (2011)

Atomic limit

TRIVIAL



R

( )R rϕ

r
Wannier states associated with R are 
localized, but gauge dependent.

Bloch states                                are defined for periodic boundary conditions
Define localized Wannier States :

( )( )
2 2

ikR ik R r
k kBZ BZ

dk dkR e e uϕ ψ
π π

− − −= =∫ ∫! !

( ) ( )ikr
k kr e u rψ =

Vanderbilt and Soluyanov PRB (2011)

Atomic limit

NON TRIVIAL



Each arrangement/orbital determines symmetry 
representations in Brillouin zone

s (or pz) orbitals

px and py orbitals

Γ K M ΓΓ1

Γ4

K3

M4

M1

Band structure graphene

Band structure bismuthene

Γ5

Γ6

K3

K1

K2

M1

M2

M3

M4

Γ K M Γ

Real space vs momentum space

orbital + atomic site + lattice
(irrep + wyckoff position + space  group)

𝝘 K M

𝝘1

𝝘4

K3

M4

M1

An EBR describes a set of Wannierizable bands 

Elementary band representations (EBRs)

atomic limit = EBR

Zak, “Symmetry specificalon of bands in solids,” Physical Review Le>ers 45, 1025 (1980), Band representalons and symmetry 
types of bands in solids,” Physical Review B 23, 2824 (1981), Band representalons of space groups,” Physical Review B 26, 3010 
(1982).
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(a) (b)

FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2

indicating that the graph described by the matrix A2 has two connected components. Consulting our ordering
of representations in Table XIV, we see that the first connected component contains the little group represen-
tations �̄8, ⌃̄1

3, ⌃̄
1
4, ⇤̄

1
3, ⇤̄

1
4, K̄4, K̄5, T̄
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4, K̄6, T̄
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3 , T̄
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1
5 . (Interchanging �̄8 and �̄9 also results in a valid disconnected energy graph

as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b

sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄

2b
6 " G representation of the space group. In particular, let si be a vector of

Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb
1,q

b
2} space. To construct

the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites qb

1
and qb

2; thus C2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little
group representation at the � point is given by �� = �̄8 � �̄9 from Table VIII and takes the form,

��(C3z) = e
i⇡
3 sz ⌦ �0 (99)

��(C2z) = isz ⌦ �x (100)

��(m11̄) = �isx (101)

��(T ) = isy ⌦ �0K, (102)

where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as

�K(C3z) = e
i⇡
3 sz ⌦ e

�i 2⇡
3 �z (103)

�K(C2zm11̄) = isy ⌦ �x, (104)

where the extra phases relative to �� come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d0(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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Γ8

Γ9

K6

M5

Michel and Zak believed elementary bands could not be gapped

“we present the topologically global concepts 
necessary for the proof” 

Elementary Band Representations 

𝝘 K M

𝝘1

𝝘4

K3

M4

M1

orbital + atomic site + lattice

Compatibility Relations

K4

K5 M5

-𝝘 K M

𝜎2

𝜎1

𝜎2

𝜎1

𝜎2

𝜎1

𝜎2

𝜎1

All possible connection between maximal and non-maximal k-
vectors

ki (u1)=k1
ki (u2)=k2 

for each max. k in *k and ki non-maximal
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Number of PEBRs without SOC Number of PEBRs with SOC Examples

1 1 Graphene, Bismuthene, Cu3SbS4

1 2 Bi1� square nets, Cu2SnHgSe4
2 2 Bi2Se3, KHgSb

TABLE I. Summary of topological phase transitions between a system without SOC to a TI with SOC, for BRs
induced from up to two irreps of the site-symmetry group of occupied WPs. When there is a single EBR in the
first column, the system is necessarily a semimetal without SOC – these materials become TIs for arbitrarily small SOC. The
first column gives the number of PEBRs directly straddling the Fermi level without SOC (per spin). The second column shows
how this number of band representations changes when SOC is turned on.
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Topological semi-metal Topological insulator

FIG. 1. Schematic: how our theory applies to graphene with SOC. We begin by inputting the orbitals (|pz "i, |pz #i)
and lattice positions relevant near the Fermi level. Following the first arrow, we then induce an EBR from these orbitals, which
subduces to little group representations at the high symmetry �,M and K points, shown here as nodes in a graph. Standard
k ·p theory allows us to deduce the symmetry and degeneracy of energy bands in a small neighborhood near these points - the
di↵erent colored edges emanating from these nodes. The graph theory mapping allows us to solve the compatibility relations
along these lines in two topologically distinct ways. On the left, we obtain a graph with one connected component, indicating
that in this phase graphene is a symmetry-protected semimetal; the Wannier functions for the four connected bands coincide
with the atomic orbial Wannier functions. In contrast, the graph on the right has two disconnected components, corresponding
to the topological phase of graphene by Def. 1. The spin up and spin down localized Wannier functions for the valence band
are localized on distinct sites of hexagonal lattice, and so break TR-symmetry in real space[8].
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FIG. 1. Topological classification of the gapped bands sat-
isfying compatibility relations. High-throughput searches
of topological bands, including strong topological bands
and fragile bands, are partially done. Topologically trivial
bands can be classified into obstructed atomic limit bands
and trivial atomic bands. Although a full topological clas-
sification of obstructed bands has not been achieved, we
perform the first high-throughput search of filling enforced
obstructed bands in the present work.

to exist metallic surface states in the gap between va-
lence and conduction bands, which is also referred to
as the filling anomaly [38–40].

In general, the OAI can be detected from the identi-
fied irreps at all the high symmetry momenta through
the RSI [19]. In some special cases, it is possi-
ble to identify the OAIs just by electron counting
without ab-initio calculations. In some space groups
(SGs) and magnetic space groups (Shubnikov space
groups, in general [41]), knowing the number of va-
lence electrons and the occupied Wycko↵ positions
(WPs) is su�cient for identifying topologically triv-
ial materials as OAIs. We denote this special type
of OAI as filling enforced obstructed atomic insula-
tor (feOAI). Figure 2(a) shows a simple example of
a feOAI. It represents a Su-Schrie↵er-Heeger (SSH)
chains model [42] in the space group P 1̄ with 2i sites
occupied by atoms. From TQC, a necessary condi-
tion for this atomic chain to be a band insulator is
that the number of electrons Ne in a unit cell is even,
i.e. Ne = 2n(n = 1, 2, 3, ...). As the dimension of
the BR induced from single orbitals at 2i is 4, when
the number of electrons is an odd multiple of 2, i.e.
Ne = 4n + 2(n = 0, 1, 2, ...), the decomposition of
the BR into EBRs needs at least one EBR induced
from an empty WP, 1a or 1b, because these EBRs
have dimension 2. Thus the filling enforced condition
Ne = 4n + 2(n = 0, 1, 2, ...) plus the X-ray di↵rac-
tion (XRD) information that the atoms are placed at
the 2i Wycko↵ position alone can identify whether an
insulator is feOAI or not without any information of
the wavefunction at the high symmetry points. To
obtain the OWCC of feOAI (in our example, to eluci-
date whether the needed EBR or EBRs out of WP 2i

X X X X

Γ XX

Γ+
1a 1b

2i }

E
ne
rg
y

a b
Γ-

X+

X-

FIG. 2. FeOAI in 1-d. (a) A 1-d atomic chain with a
Wycko↵ position 2i occupied by atoms. (b) Schematic
diagram of the band structure of the 1-d model in (a).
The blue and red bands are valence and conduction bands,
respectively.

are those of 2a or 2b), one needs to analyze the spe-
cific BR. As schematically shown in Figure 2(b), when
the irreps of the valence band are {�+X+}, which are
induced from Ag@1a, the OWCC is sitting at 1a.
In this paper we first derive in Section II the fill-

ing enforced conditions of topologically trivial bands
to be obstructed for all the 1651 Shubnikov space
groups (SSGs). In Section III, using the obtained
filling enforced conditions, we perform the first high-
throughput search for feOAIs from the Topological
Quantum Chemistry website. In Section IV we ana-
lyze some of their surface states.

II. FILLING ENFORCED CONDITIONS

In this section we will obtain the filling enforced
conditions of OAIs in all the 1651 SSGs, which con-
tain as a particular case the SGs of non-magnetic
structures, both with and without spin-orbit coupling
(SOC).
Let’s consider an insulator that has been identified

as trivial using the TQC [1] or the magnetic TQC
[2] method (it has been labeled as LCEBR in [6] or
[9]) in a single (double) SG with a set of WPs {↵}
with multiplicities {n↵}. We consider here the multi-
plicities in a primitive unit cell (not the conventional
cell used in the International Tables of Crystallogra-
phy [43]). We denote the allowed co-representations
of the site-symmetry group of the WP {↵} as {⇢i↵},
whose dimensions are {d(⇢i↵)}, with i = 1 . . . Nrep,↵,
whereNrep,↵ is the total number of co-representations
of the site-symmetry group G↵. In paramagnetic
compounds, for which time-reversal symmetry is al-
ways a symmetry operation of the SG, if SOC is con-
sidered (spinful cases), the Kramers theorem implies
that the dimension {d(⇢i↵)} is always an even num-
ber. In paramagnetic spinless (without SOC) sys-
tems the dimensions of the irreps can be odd, but
two times of the dimension electrons are needed to
fill each irrep due to the 2-fold spin degeneracy. Fi-
nally, in magnetic groups, where the time-reversal and
spin SU(2) symmetries are absent, there is no restric-
tion on electron number parity as in the paramag-
netic groups. All the band co-representations {⇢i↵}
(and the corresponding dimensions {d(⇢i↵)}) induced
from any WP in the 1651 double SSGs are accessi-

(1) 2i sites occupied by atoms 
Insulating state: Ne even

OWCC sitting at 1a
(2) dim of BR at 2i is 4

(3) Ne=4n+2 -> BR of dim 2 is needed

SSH chain in P-1

Obstructed atomic insulators
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case AgAg@4a AuAu@4a AgAg@4b AuAu@4b
#1 9 8 0 0
#2 8 7 1 1
#3 7 6 2 2
#4 6 5 3 3
#5 5 4 4 4
#6 4 3 5 5
#7 3 2 6 6
#8 2 1 7 7
#9 1 0 8 8

TABLE II. All possible decompositions of the BR of CdSb
into linear combination of the EBRs in DSG Pbca (# 61).
The first column gives the EBRs induced from di↵erent
orbitals at Wycko↵ positions 4a or 4b; the numbers below
are the multiplicities of each EBR in the corresponding
decomposition.
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FIG. 3. (a) Crystal structure of CdSb, where the black
spheres are the position of OWCCs. The red, green and
blue planes cutting through the OWCCs are the cleavage
planes with Miller indices (100), (010) and (001), respec-
tively. (b) The 3D Brillouin zone (BZ) for CdSb. (c)
Electronic band structure for CdSb with SOC along the
high-symmetry paths in BZ. (d)-(f) Surface states of semi-
infinite CdSb on the cleavage planes defined in (a). The
surface states are highlighted by bright orange lines in
the gap. (g)-(i) Surface states of CdSb with slab struc-
ture along the cleavage planes defined in (a). By counting
the number of bands from the lowest bands until charge
neutrality, we indicate the valence and conduction bands
by blue and red lines, respectively. From these figures one
can infer that the surface states in (d)-(f) are half-filled.

rials in the obstructed atomic phase. Through the
application of the filling enforced conditions to the
non-magnetic structures labeled as trivial insulators

in the Topological Quantum Chemistry website, we
remarkably find 957 ICSD entries (638 unique mate-
rials) as feOAIs, among which 750 (475) compounds
have an indirect band gap. Combined with the BR
analysis and first principles calculations, we have also
showcased the filling anomaly metallic surface states
for specific surfaces of several feOAIs. The special
metallic surface states in feOAIs provide an ideal plat-
form for the study of two-dimensional electron gases
that could be detected in ARPES or STM experi-
ments.
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case AgAg@4a AuAu@4a AgAg@4b AuAu@4b
#1 9 8 0 0
#2 8 7 1 1
#3 7 6 2 2
#4 6 5 3 3
#5 5 4 4 4
#6 4 3 5 5
#7 3 2 6 6
#8 2 1 7 7
#9 1 0 8 8

TABLE II. All possible decompositions of the BR of CdSb
into linear combination of the EBRs in DSG Pbca (# 61).
The first column gives the EBRs induced from di↵erent
orbitals at Wycko↵ positions 4a or 4b; the numbers below
are the multiplicities of each EBR in the corresponding
decomposition.
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FIG. 3. (a) Crystal structure of CdSb, where the black
spheres are the position of OWCCs. The red, green and
blue planes cutting through the OWCCs are the cleavage
planes with Miller indices (100), (010) and (001), respec-
tively. (b) The 3D Brillouin zone (BZ) for CdSb. (c)
Electronic band structure for CdSb with SOC along the
high-symmetry paths in BZ. (d)-(f) Surface states of semi-
infinite CdSb on the cleavage planes defined in (a). The
surface states are highlighted by bright orange lines in
the gap. (g)-(i) Surface states of CdSb with slab struc-
ture along the cleavage planes defined in (a). By counting
the number of bands from the lowest bands until charge
neutrality, we indicate the valence and conduction bands
by blue and red lines, respectively. From these figures one
can infer that the surface states in (d)-(f) are half-filled.

rials in the obstructed atomic phase. Through the
application of the filling enforced conditions to the
non-magnetic structures labeled as trivial insulators

in the Topological Quantum Chemistry website, we
remarkably find 957 ICSD entries (638 unique mate-
rials) as feOAIs, among which 750 (475) compounds
have an indirect band gap. Combined with the BR
analysis and first principles calculations, we have also
showcased the filling anomaly metallic surface states
for specific surfaces of several feOAIs. The special
metallic surface states in feOAIs provide an ideal plat-
form for the study of two-dimensional electron gases
that could be detected in ARPES or STM experi-
ments.
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tem exhibits a nontrivial Z2 index.
We were motivated to explore the non-symmorphic ex-

ample because, as part of their ground-breaking work on
the connectivity of energy bands, Michel and Zak con-
jectured that spinless EBRs in non-symmorphic space
groups cannot realize a gapped band structure.[31, 32] In
Ref 26, we explained where Michel and Zak’s proof fails.
Here, we pick a particular non-symmorphic space group,
P4232, and construct a tight-binding model to explicitly
show its gapped, topological nature. In doing so, we find
a novel feature: the two-dimensional “Wilson Hamilto-
nian” exhibits a topologically protected band crossing.

In each example, we derive a bulk topological invari-
ant. An essential tool is the “kk-directed” Wilson loop,
which describes the parallel transport of an isolated set
of bands:[4, 17, 33–42]

W(k?,k0) ⌘ Pei
R k0+2⇡
k0

dkkAk(k?,kk), (1)

where P indicates that the integral is path-ordered and
Ak(k)ij = ihui(k)|@kkuj(k)i is a matrix whose rows and
columns correspond to each eigenstate in the isolated
set of bands. The eigenvalues of W are gauge invari-
ant and of the form ei✓(k?), independent of the “base
point,” k0.[40] A quantized invariant derived from the
Wilson loop is invariant under any deformation of the
Hamiltonian that preserves the gap in the spectrum.

Spinless TCI on the honeycomb lattice We start with
spinless px,y orbitals on the honeycomb lattice, described
by the nearest-neighbor Hamiltonian: [43]

H0
k =

✓
0 hk

h†
k 0

◆
(2)

where non-zero blocks mix the A and B sublattices and

hk =
1

2

�
e�ik·�1 + e�ik·�2 + e�ik·�3

�
(t� + t⇡)I

+
1

2

✓
e�ik·�1 � 1

2
e�ik·�2 � 1

2
e�ik·�3

◆
(t� � t⇡)�z

+

p
3

4

�
e�ik·�2 � e�ik·�3

�
(t� � t⇡)�x (3)

The Pauli matrices, �x,y,z, act in the px,y subspace; t�,⇡
parameterize � and ⇡ bond strengths; and �1,2,3 are the
nearest-neighbor vectors (see Fig 1a). Previously this
model with t⇡ = 0 was studied for its flat bands.[44, 45]
The spectrum ofH0

k is shown in Fig 1b. The degeneracies
at K ⌘ 2

3g1 +
1
3g2 and � are symmetry-required.[46]

To open a gap, we add the following next-nearest
neighbor hopping term, which preserves the crystal sym-
metries of the honeycomb lattice:[47]

H1
k = sin( 12k·e1) sin(

1
2k·e2) sin(

1
2k·(e1�e2))⌧z⌦�y, (4)

where the matrices ⌧i act in the sublattice subspace. The
term in Eq. (4) changes the energy-ordering of the bands
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FIG. 1. (a) Lattice (e1,2) and reciprocal lattice (g1,2) ba-
sis vectors. The dotted arrows (�1,2,3) indicate the vectors
between nearest neighbor sites. A and B indicate the sublat-
tices. (b) Spectrum of H0

k with t� = 1, t⇡ = �.5 (c) Gapped
band structure of H0

k+xH
1
k with t� = .8, t⇡ = 1.0, x = .6 and

(d) the argument of its Wilson loop eigenvalues.

at K, while preserving the two-fold degeneracy. For large
enough |x|, H0

k + xH1
k can be gapped, as in Fig. 1c; see

Sec. S1A for a phase diagram.

The spectrum in Fig 1c represents a disconnected
EBR.[1, 2] We construct a non-trivial bulk topological
invariant from the g1-directed Wilson loop of the lower
two bands. Its eigenvalues are shown in Fig. 1d as a func-
tion of the base point. When the base point is � or M ,
the Wilson loop eigenvalues (�1 and +1, respectively[48])
are completely determined by the C2z eigenvalues[38, 42]
(the C2z operator is �⌧x⌦�0.[49] ) This forces the “Wil-
son bands” to wind in opposite directions. The quantized
eigenvalues at � and M prevent the Wilson spectrum
from being smoothly deformed to flat, which indicates
that the valence bands are topologically nontrivial.

The Wilson loop winding requires that both occupied
bands of H0

k+xH1
k at � have the same C2z eigenvalue, ⌘,

and that both occupied bands at M have the C2z eigen-
value �⌘. Consider the Wilson loop of three bands: the
two occupied bands and a third, trivial, band, not in
our model. If the C2z eigenvalues of the third band at
� and M are both equal to ⌘, then the eigenvalues of
the three-band Wilson loop will not be quantized at M
and it will fail to wind. Thus, the topological invariant
is not stable to adding a third band to the projector (al-
though the winding of the projector onto two bands is
invariant under adding a third band as long as the gap
between the third band and the existing bands does not
close.) The existence of a topological invariant that de-
pends on the number of bands is reminiscent of the “Hopf
insulator.”[50]

Phys. Rev. Lett. 120, 266401 (2018) 
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set of bands. The eigenvalues of W are gauge invari-
ant and of the form ei✓(k?), independent of the “base
point,” k0.[40] A quantized invariant derived from the
Wilson loop is invariant under any deformation of the
Hamiltonian that preserves the gap in the spectrum.
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parameterize � and ⇡ bond strengths; and �1,2,3 are the
nearest-neighbor vectors (see Fig 1a). Previously this
model with t⇡ = 0 was studied for its flat bands.[44, 45]
The spectrum ofH0

k is shown in Fig 1b. The degeneracies
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To open a gap, we add the following next-nearest
neighbor hopping term, which preserves the crystal sym-
metries of the honeycomb lattice:[47]
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at K, while preserving the two-fold degeneracy. For large
enough |x|, H0

k + xH1
k can be gapped, as in Fig. 1c; see

Sec. S1A for a phase diagram.

The spectrum in Fig 1c represents a disconnected
EBR.[1, 2] We construct a non-trivial bulk topological
invariant from the g1-directed Wilson loop of the lower
two bands. Its eigenvalues are shown in Fig. 1d as a func-
tion of the base point. When the base point is � or M ,
the Wilson loop eigenvalues (�1 and +1, respectively[48])
are completely determined by the C2z eigenvalues[38, 42]
(the C2z operator is �⌧x⌦�0.[49] ) This forces the “Wil-
son bands” to wind in opposite directions. The quantized
eigenvalues at � and M prevent the Wilson spectrum
from being smoothly deformed to flat, which indicates
that the valence bands are topologically nontrivial.

The Wilson loop winding requires that both occupied
bands of H0

k+xH1
k at � have the same C2z eigenvalue, ⌘,

and that both occupied bands at M have the C2z eigen-
value �⌘. Consider the Wilson loop of three bands: the
two occupied bands and a third, trivial, band, not in
our model. If the C2z eigenvalues of the third band at
� and M are both equal to ⌘, then the eigenvalues of
the three-band Wilson loop will not be quantized at M
and it will fail to wind. Thus, the topological invariant
is not stable to adding a third band to the projector (al-
though the winding of the projector onto two bands is
invariant under adding a third band as long as the gap
between the third band and the existing bands does not
close.) The existence of a topological invariant that de-
pends on the number of bands is reminiscent of the “Hopf
insulator.”[50]
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Figure 1. Workflow schematic for generating
the Topological Materials Database (https://www.
topologicalquantumchemistry.com/). For each entry
in the Inorganic Crystal Structure Database (ICSD) [41],
we first determine if the entry is stoichiometric, contains
coordinates for all of the atoms listed in the chemical
formula, and lists atomic coordinates compatible with the
crystallographic space group (SG) of the material. We then
perform self-consistent density functional theory (DFT)
calculations, both with and without incorporating the e↵ects
of spin-orbit coupling (SOC). The DFT calculations with
and without SOC each consist of four steps (labeled VASP1
– VASP4, see SA D for further details) in which we obtain
the electronic band structure at EF , the symmetry data
[small corepresentation (corep) multiplicities] at all integer
electronic fillings above the core shell, and the density of
states. Lastly, using the VASP2Trace program previously
implemented for Ref. 38 and an updated version of the Check
Topological Mat program on the Bilbao Crystallographic
Server (BCS) [https://www.cryst.ehu.es/] implemented
for this work, we compute for each DFT calculation the
stable and fragile topological classifications of all isolated
groupings of bands above the core shell as determined by the
compatibility relations in Topological Quantum Chemistry
(TQC) [28] (see SA B and SA C for further details).

ICSD entries analyzed in Ref. 38, roughly ⇠ 7,000 were
found to be topological at EF .

This result raises two questions. First, the complete
ICSD contains 96,196 stoichiometric ICSD entries with
processable (non-corrupt) structural data, raising the
question of whether a high percentage of all of the known
inorganic materials are topological at EF . Second, ener-
getically isolated groupings of bands may exhibit nontriv-
ial topology, independent of the electronic filling. Hence,
the distribution of topological bands away from EF in
real materials is also a major outstanding question in
the study of quantum matter. In this work, we answer
both questions by performing the first complete study
of symmetry-indicated band topology in all known, stoi-
chiometric, inorganic crystalline solids without magnetic
order. Our calculations include the first complete diag-
nosis of symmetry-indicated band topology away from
EF , which represents a significant advance from the pre-
vious high-throughput topological materials searches in
Refs. 38–40. Using TQC and nonmagnetic SIs, we com-
pute the symmetry-indicated, nonmagnetic band topol-
ogy of all bands in all 96,196 stoichiometric ICSD en-
tries with valid structure files from the core shell to at
least 2Ne above, where Ne is the number of valence elec-

trons. Unlike in Refs. 38–40, the SIs used in this work
include both the SIs of stable band topology – which in-
dicate familiar strong TI and TCI phases – as well as,
for the first time, the recently introduced SIs of fragile
band topology [42–45] – which represent more exotic TCI
phases with topological corner modes [34] and twisted-
boundary edge states [46]. Fragile phases have in partic-
ular emerged as an area of intense interest in condensed
matter physics after the recent theoretical recognition
that the superconducting and correlated-insulating states
in magic-angle twisted bilayer graphene originate from
nearly-flat fragile topological bands [47, 48].

Through our calculations, we discover the existence of
novel classes of topological materials, including enforced
TSMs with energetically isolated fragile bands at EF ,
repeat-topological (RTopo) materials with stable topo-
logical insulating gaps at and just below EF , and su-
pertopological (STopo) materials in which every energet-
ically isolated set of bands above the core shell is sta-
ble topological. We have performed a significant up-
grade to the Topological Materials Database (https:
//www.topologicalquantumchemistry.com/) – a pub-
licly available online catalog of topological materials –
for accessing and intuitively searching the results of
this study. In the extensive Supplementary Appendices
(SA), we present detailed statistics for our computa-
tions, lists of idealized materials in each topological class,
and highlight new features on the Topological Materi-
als Database implemented for this work, which include
dynamical zoom options, density-of-states calculations,
electronic-structure calculations in the absence of SOC,
and advanced search options (a complete list of new
features is provided in SA G). We find that 52.65% of
all materials are topological at EF , and roughly 2/3
of bands across all materials exhibit the symmetry-
indicated topology of 3D strong TIs, weak TIs, TCIs, and
higher-order TIs, which are in this work together classi-
fied as topologically stable, as they are robust to the ad-
dition of trivial or fragile bands (though sensitive to the
relaxation of time-reversal and crystal symmetries) [1–
5, 11–17, 29, 30]. Most shockingly, we find that 87.99% of
all materials contain at least one stable or fragile topolog-
ical band in their energy spectrum, even if away from EF .
Our discovery of ubiquitous electronic band topology in
solid-state materials motivates the formulation of a new
periodic table of chemical compounds in which electronic
bands in materials are instead sorted by a combination of
common topological features and chemical and structural
properties.

Lastly, our characterization of electronic band topol-
ogy away from EF is immediately useful in numerous
experimental settings, including ARPES experiments –
which measure states at and below EF – and pump-
probe experiments – in which electrons can be excited
to observe bands above EF . As will be discussed be-
low, our theory has in fact already provided robust ex-
planations for previously puzzling ARPES data. Beyond
photoemission experiments, states away from EF may
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Figure 2. Topology of the stoichiometric materials in the ICSD. (a) Distribution of the topology at EF with SOC among
the 38,298 stoichiometric unique materials in the ICSD as defined in SA D, subdivided by crystallographic point group (PG). For
each of the 32 PGs of the 230 SGs [47], we list the number of symmetry-indicated stable topological (crystalline) insulators (NLC-
or SEBR-classified TIs and TCIs), TSMs (ES or ESFD), or unique materials with trivial symmetry-indicated topology (LCEBR).
(b) The distribution of the topology at EF across all PGs and topological classes (see Refs. 37 and 38 and SA B). As shown in
(b), 16.00% of the unique materials are TIs or TCIs at EF and 36.65% are TSMs, implying that a remarkable 52.65% of the
stoichiometric materials in nature are topological at intrinsic filling. (c) Distribution of the symmetry-indicated band topology
away from EF across the stoichiometric unique materials in the ICSD. The data in (c) indicates that an overwhelming 87.99% of
materials contain at least one symmetry-indicated stable or fragile topological band across the energy range of our first-
principles calculations (see SA D for calculation details), which is even more remarkable when considering that many materials
(e.g. noncentrosymmetric crystals) have SGs without either stable or fragile SIs (see Refs. 1, 16, 17, 29–36, 44, and 45).
Because previous works have demonstrated the existence of non-symmetry-indicated TI and TCI phases in materials with
trivial stable SIs [1, 3, 13, 14, 34], then the percentage of materials in nature with topological bands at and away from EF is
necessarily even larger than 87.99%, suggesting an intriguing direction for future study. In addition to the repeat-topological and
supertopological materials discovered in this work (see Fig. 5 and SA I), we have also discovered the existence of supermetallic
(SMetal) materials, in which all of the bands above the core shell are connected up to at least a filling of 2Ne, where Ne is
the number of valence electrons. (see SA F and SA H). Though SMetal materials are relatively rare in the presence of SOC
[17 unique materials, see panel (c)], there are conversely 1, 138 unique SMetal materials without SOC, which is consistent with
the general trend of increased band connectivity in materials when neglecting the e↵ects of SOC (see Table I and SA F, SA H,
and SA J). In SA H, we provide further detailed statistics for the symmetry-indicated band topology at and away from EF

across all of the stoichiometric materials in the ICSD.

and SEBR-classified) when SOC is introduced, whereas
ESFD-classified TSMs without SOC overwhelmingly re-
main TSMs (ES- and ESFD-classified) when the e↵ects
of SOC are incorporated. In SA J, we provide complete
statistics for the SOC-driven topological phase transi-
tions at EF in the ICSD, and in SA K4, we identify rep-
resentative materials for each class of SOC-driven TSM-

insulator transition in Table I.

Topology at EF Topology at any filling

2022 TQC 
~50% topological materials  

~80% materials have at  
least one topological gap 

All gaps in the energy spectrum
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(c) Bi2Mg3 - ICSD 659569 - SG 164 (P 3̄m1) - SEBR (d) (0001)-Surface Spectrum of Bi2Mg3
Z2,1 = 0 Z2,2 = 0 Z2,3 = 0 Z4 = 3

Figure 5. Repeat-topology and supertopology in Bi2Mg3. (a) A schematic depiction of a repeat-topological (RTopo) band
structure. In RTopo materials, the gap at the Fermi level, as well as the next gap below EF as measured by band connectivity
through TQC (see SA B), exhibit cumulative symmetry-indicated stable topology (see SA I 1). By this definition – which is
motivated by the experimental accessibility of topological gaps and boundary states below EF – we note that it is possible for
the isolated bands between EF and the next-highest gap below EF to be topologically trivial. (b) A schematic depiction of a
supertopological (STopo) band structure. In STopo materials, every energetically isolated set of bands in the spectrum exhibits
symmetry-indicated stable topology (though the system at EF is still free to be a TSM or exhibit cumulative trivial topology,
see SA I 2). (c) Bulk band structure of Bi2Mg3 [ICSD 659569, SG 164 (P 3̄m1)], an experimentally-established 3D TI [60]
revealed by our investigations to additionally be RTopo and STopo. The numbers between the stable topological bands in (c)
indicate the cumulative stable SIs of each band gap in the order Z2w,1,Z2w,2,Z2w,3,Z4 [see Refs. 16, 17, 29, 30, 33, and 34 and
SA K for the physical meaning of the stable SIs in SG 164 (P 3̄m1)]. (d) (0001)-surface states of Bi2Mg3 obtained from surface
Green’s functions (see SA I 1 for calculation details). In (d), we have labeled the surface states using the cumulative stable SIs
of the projected bulk gaps (as determined by band connectivity, see Table II in SA C for further details). Previous ARPES
investigations of Bi2Mg3 have revealed the existence of “surface resonance bands” below EF at the (0001)-surface � point [60].
In this work, we recognize the surface resonance bands in Bi2Mg3 to in fact be RTopo Dirac-cone surface states in the first
gap below EF [the “0013 RTopo gap” in (d)]. The surface Green’s function calculations in (d) also exhibit twofold-Dirac cone
surface states within the projected bulk gap ⇠ 0.8 eV below EF [the “0010 WTI gap” in (d)]. Though the earlier ARPES
experiments also observed surface states in the projected 0010 gap in Bi2Mg3 [60], we emphasize that the surface states in the
0010 gap in (d) are either trivial or originate from non-symmetry-indicated stable topology, because the cumulative stable SIs
(0010) characterize an (obstructed) weak TI phase that does not generically exhibit anomalous twofold Dirac cones on z-normal
[(0001)-] surfaces (see SA K1 f).
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BCS Applications Implemented for MTQC

Application Contents Description

MKVEC Momentum stars SA D1

of the MSGs

Corepresentations Small and full SA D2

magnetic (co)reps

MCOMPREL Compatibility relations SA D3

in the MSGs

CorepresentationsPG Magnetic site-symmetry SA E1

group (co)reps

MSITESYM Magnetic small SA E2

(co)reps at one k point

induced from a site q

MBANDREP MEBRs of the MSGs SA E3

TABLE I: Applications on the Bilbao Crystallographic Server
(BCS) implemented for MTQC. For this work, we have imple-
mented the programs listed in this table to access the group-
theoretic properties of the MSGs. In order, this table con-
tains the name of the program, the data accessible through
the program, and the section of the SA in which the program
is detailed. In addition to the properties of the MSGs listed
in this table, each tool contains the analogous properties of
the 230 Type-II (nonmagnetic) SGs. Therefore, as respec-
tively detailed in each SA section, each program in this table
subsumes the content of an existing program on the BCS.

viously calculated for TQC5,38,39 [Fig. 1(b)] – can be ac-
cessed through the MBANDREP tool on the BCS (http:
//www.cryst.ehu.es/cryst/mbandrep, further detailed
in SA E3). To enumerate the MEBRs of each MSG M ,
we begin by inducing band (co)reps from each irreducible
(co)rep of one site-symmetry group within each of the
highest-symmetry [i.e. maximal, see SA C2 a] Wycko↵
positions in M . We next exclude the exceptional cases in
which the induced band (co)reps are equivalent to direct
sums of other band (co)reps (SA E3 a and G1). The
remaining band (co)reps are defined as elementary (i.e.
MEBRs); statistics and further details for the MEBRs
are provided in SA E3b and G2.

Importantly, just as each MEBR is the Fourier-
transformed description of a crystal of site-symmetry
(co)reps, the Wannierizable bands that transform in
each MEBR are the Bloch eigenstates of the Fourier-
transformed electronic Hamiltonian of weakly coupled
magnetic atomic orbitals [Fig. 2(c) and SA E2]. Con-
sequently, in each momentum star of each MSG – which
are accessible through the MKVEC tool (http://www.
cryst.ehu.es/cryst/mkvec, see SA D1) – each MEBR
contains a set of full (co)reps that is specified by the
Wycko↵ position from which the MEBR is induced. Each
full (co)rep can be reduced through subduction to a set
of irreducible small (co)reps at each k point that are
known as the symmetry data [Fig. 2(b)]. The complete
set of small and full (co)reps of each MSG and direct
dependencies between the site-symmetry (co)reps at q

and the induced symmetry data at k are respectively
accessible through the Corepresentations (http://www.
cryst.ehu.es/cryst/corepresentations, detailed in
SA D2) and MSITESYM (http://www.cryst.ehu.es/
cryst/msitesym, detailed in SA E2) tools. Lastly, to de-
termine whether the bands that transform in the induced
symmetry data are required by symmetry to be degen-
erate or cross along high-symmetry paths in the BZ, we
have computed the magnetic small (co)rep compatibility
relations, which are accessible through the MCOMPREL
tool introduced in this work (https://www.cryst.ehu.
es/cryst/mcomprel, detailed in SA D3).

Topological Applications of the MEBRs

We will now describe two applications of the MEBRs
and MTQC to the discovery and characterization of novel
topological phases of matter.

Symmetry-enhanced fermion doubling theorems – The
surface states of each d-dimensional (d-D) TI and TCI
are termed anomalous because the surface states can-
not be stabilized in a d � 1-D lattice model with the
symmetries of the TI or TCI surface. In 3D TIs, AXIs,
and Chern [quantum anomalous Hall (QAH)] insulators,
the boundary anomaly and bulk response can be un-
derstood from the perspective of well-known high-energy
field theories40,59,60. For example, the bulk of a 3D TI
is characterized by a nontrivial axion angle ✓ = ⇡ that
is pinned by {T |0}, and each surface exhibits an odd
number of twofold-degenerate Dirac cones, representing
an exception to the 2D parity anomaly12,13,40,60. The
bulk axion angle ✓ = ⇡ further indicates that 3D TIs
exhibit a quantized magnetoelectric response40,60. How-
ever, in other cases, such as 3D helical TCIs and HO-
TIs, the boundary anomalies and bulk response theories
have not yet been elucidated in the language of high-
energy field theory17,19,20,23,25,29. Nevertheless, as shown
in Refs. 17,20,23, the anomalous surface states of d-D
TIs and TCIs may be classified through a comparison to
the complete set of d� 1-D lattice models of symmetry-
stabilized topological SMs.

Specifically, a fermion doubling theorem can be evaded
either by stabilizing the anomalous nodal point(s) on the
d � 1-D boundary of a d-D topological (crystalline) in-
sulator (i.e., through spectral flow), or by modifying one
of the system symmetries so that the symmetry is repre-
sented di↵erently at low and high energies (e.g., the ma-
trix representatives of {T |0} and {T |a/2} are the same
near k = 0, but di↵er at larger k, see SA D2b). The
elucidation of a (symmetry-enhanced) fermion doubling
theorem and an example of its evasion has historically
required a significant theoretical e↵ort. For example, in
Ref. 61, it was shown that unpaired fourfold-degenerate
Dirac fermions cannot be stabilized in lattice models of
2D, T -symmetric SMs. Through an exhaustive analysis
of the symmetry-enforced spectral flow in 3D crystals,
a 3D T -symmetric TCI with an unpaired (anomalous),
symmetry-stabilized, fourfold surface Dirac fermion was
identified in Ref. 17. Crucially, using the fourfold Dirac
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a

Sym. indicated
stable topology

Sym. indicated
fragile topology

Fractional Difference

SI formulas

Fragile invariants

SI groups Affine monoids

Stable invariantStable invariants

K-theory

Wilson loop

Homology

Wilson loop

Euler class

Homotopy

Split or band inversion

Non-indicated
stable topology

Non-indicated
fragile topology

Compatibility-relation allowed bands(Co)reps

Mapping

This work:
for all SSGs

This work: for all SSGs

SSGs Type-I Type-II Type-III Type-IV

(Co)reps ✓ ✓ ✓ ✓

Compatibility rel. ✓ ✓ ✓ ✓

EBRs ✓ ✓ ✓ ✓

SI group ✓ ✓ ✓ ✓

SI formulas ✓ ✓ ✓ ✓

 Fragile criteria ✓

Stable invariants ✓

Boundary states ✓

 Fragile criteria

Boundary states

Twisted

boundary

condition

b

Surface

states

Corner

states

Hinge

states

Spectral

flows

SI → invariants ✓ ✓ ✓ ✓

Dirac theory

Topological crystal

Mapping

MSGs SGs MSGs MSGs

* * *
* * *

Atomic limits Obstructed atomic limits

(1651)(1651)
(230) (230) (674) (517)

EBRs

Enforced SMs ✓✓ ✓ ✓

Compatibility-relation forbidden bands

Enforced semimetals
This work: for all SSGs

FIG. 1: MTQC in the scheme of topological band theory. (a) The complete scheme of topological band theory for 3D crystals.
Using small (co)reps in momentum space (SA D2), the compatibility relations (SA D3) indicate whether a set of bands is
allowed by symmetry to be energetically isolated from other bands in the energy spectrum. If the bands are energetically
isolated, then there exist a wide range of methods for diagnosing whether the bands exhibit the stable topology of TIs and
TCIs10–26, “fragile” topology26–29, or the polarization-nontrivial topology of obstructed atomic limits5,26,30. Conversely, if the
bands are required by symmetry to cross, then the bands characterize a topological semimetal (SM), which may exhibit surface31

or hinge25,26 states. (b) In this work [indicated with red dashed lines in (a) and red checks and stars in (b)], we have derived
the complete sets of trivial bands [EBRs, see SA E] and symmetry-indicated, spinful, stable topological bands in the 1,651
SSGs, which subdivide into the 230 Type-II nonmagnetic SGs and the 1,421 Type-I, III, and IV MSGs (SA B)32–34. We have
additionally calculated the small (co)reps and compatibility relations for all 1,651 single and double SSGs, which are accessible
through the tools listed in Table I. These results comprise the theories of MTQC and fermionic symmetry-based-indicators
(double SIs)7,21–23,35, which apply to all possible 3D magnetic and nonmagnetic crystals with mean-field Hamiltonians. We
have also determined the physical bases of all double (spinful) SIs, and symmetry-indicated topological bulk and anomalous
boundary states for all 1,651 double SSGs (SA F). Lastly, the EBRs of the Type-III and Type-IV MSGs computed in this work
also facilitate the complete enumeration of symmetry-enforced magnetic topological SMs – examples are provided in Fig. 3(c)
and in SA D2b. In (b), we have used stars to indicate categories in which we have solved complete sub-categories (such as the
double SIs in the 1,651 double SSGs), but in which there remain topological features outside of the scope of this work, such as
non-symmetry-indicated stable topological bands16,17,25,29 and bosonic (spinless) TCIs.

nificant partial tabulations35,52, progress towards com-
pleting the group theory of magnetic crystals has largely
stalled for the past 70 years32,33.

In this work, we use a combination of computational
and analytic methods to derive the small (co)reps and
MEBRs of the MSGs, completing the 100-year-old prob-
lem of crystalline group theory. Using the small (co)reps
and MEBRs, we construct a complete position-space the-
ory of mean-field band topology in the 1,651 single (spin-
less) and double (spinful) SSGs – Magnetic Topologi-
cal Quantum Chemistry (MTQC) – that subsumes that
earlier theory of TQC5,6. To access the data generated
for this work, we have implemented several programs on
the Bilbao Crystallographic Server (BCS)53,54, which are
listed in Table I. Each of the programs listed in Table I
contains data for both the magnetic and nonmagnetic
SSGs, and therefore replaces an existing tool on the BCS.
In the sections below, we will first describe the underly-
ing machinery of MTQC through which band (co)reps

in momentum space are induced from magnetic atomic
(Wannier) orbitals in position space. Next, we will detail
the topological information that can be inferred from the
MEBRs, which include lattice models for magnetic excep-
tions to fermion doubling theorems17,55, and symmetry-
based indicators (SIs)7,21–23,35 for magnetic SMs, TIs,
and TCIs (see SA F). In particular, in this work, we
have generated the complete double SI groups, formulas,
and symmetry-respecting topological bulk and boundary
states for all 1,651 double SSGs, which characterize spin-
ful electronic states in solid-state materials. Through
this calculation, we have obtained the complete set of
symmetry-indicated 3D spinful (fermionic) topological
phases. We discover that, in addition to previously iden-
tified Weyl SM (WSM)56–58, quantum anomalous Hall59,
and axion insulators (AXIs)29,40,60, there also exist sev-
eral previously unidentified non-axionic magnetic HOTIs
with mirror-protected helical hinge states see Fig. 4(c-e)
and SA F6. We conclude by briefly discussing future di-
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Categories Properties Materials
I-A Non-collinear Manganese compounds Mn3GaC, Mn3ZnC, Mn3CuN, Mn3Sn, Mn3Ge, Mn3Ir, Mn3Pt, Mn5Si3
I-B Actinide Intermetallic UNiGa5, UPtGa5, NpRhGa5, NpNiGa5

I-C Rare earth intermetallic NdCo2, TbCo2, NpCo2, PrAg DyCu, NdZn, TbMg, NdMg,
Nd5Si4, Nd5Ge4, Ho2RhIn8, Er2CoGa8, Nd2RhIn8, Tm2CoGa8,
Ho2RhIn8, DyCo2Ga8, TbCo2Ga8, Er2Ni2In, CeRu2Al10, Nd3Ru4Al12,
Pr3Ru4Al12, ScMn6Ge6, YFe4Ge4, LuFe4Ge4, CeCoGe3

II-A Metallic Iron pnictides LaFeAsO, CaFe2As2, EuFe2As2, BaFe2As2, Fe2As, CaFe4As3,
LaCrAsO, Cr2As, CrAs, CrN

II-B Semiconducting manganese pnictides BaMn2As2 BaMn2Bi2, CaMnBi2, SrMnBi2, CaMn2Sb2, CuMnAs,
CuMnSb, Mn2As

II-C Rare earth intermetallic compounds with
the composition 1:2:2

PrNi2Si2, YbCo2Si2, DyCo2Si2, PrCo2P2, CeCo2P2, NdCo2P2,
DyCu2Si2, CeRh2Si2, UAu2Si2, U2Pd2Sn, U2Pd2In, U2Ni2Sn,
U2Ni2In, U2Rh2Sn

II-D Rare earth ternary compounds of the
composition 1:1:1

CeMgPb, PrMgPb, NdMgPb, TmMgPb

III-A Semiconducting Actinides/Rare earth
Pnictides

HoP, UP, UP2, UAs, NpS, NpSe, NpTe, NpSb, NpBi, U3As4, U3P4

III-B Metallic oxides Ag2NiO2, AgNiO2, Ca3Ru2O7, Double perovskite Sr3CoIrO6

III-C Metal to insulator transition compounds NiS2, Sr2Mn3As2O2

III-D Semiconducting and insulating oxides,
borates, hydroxides, silicates, phosphate

LuFeO3, PdNiO3, ErVO3, DyVO3, MnGeO3, Tm2Mn2O7, Yb2Sn2O7,
Tb2Sn2O7, Ho2Ru2O7, Er2Ti2O7, Tb2Ti2O7, Cd2Os2O7, Ho2Ru2O7,
Cr2ReO6, NiCr2O4, MnV2O4, Co2SiO4, Fe2SiO4, PrFe3(BO3)4,
KCo4(PO4)3, CoPS3, SrMn(VO4)(OH), Ba5Co5ClO13, FeI2

TABLE III. The magnetic topological materials identified in this work.

interesting if the occupied bands form Wannier functions
centred at positions away from the atoms, because a
Wannier centre shift in three-dimensional insulators leads
to the appearance of topological corner states, like those
of quantized ‘quadrupole’ insulators [41]. Topological
phases characterized by displaced Wannier functions
are known as obstructed atomic limits; we leave their
high-throughput calculation for future studies.

VIII. CONCLUSION

We have performed LDA + U calculations on
549 existent magnetic structures and have successfully
classified 403 using the machinery of MTQC [7].
We find that 130 materials (about 32% of the
total) have topological phases as we scan the U
parameter. Our results suggest that a large
number of previously synthesized magnetic materials
are topologically nontrivial. We highlight several
‘high-quality’ magnetic topological materials that should
be experimentally examined for topological response
effects and surface (and hinge) states.
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FIG. 1. Band structures of the ‘high-quality’ magnetic topological materials predicted by MTQC. (a, b) The antiferromagnetic
axion topological insulators, NpBi and CaFe2As2. Although there are Fermi pockets around S and Y in CaFe2As2, the
insulating compatibility relations are fully satisfied. We note that there is a small gap (about 5 meV) along the path T–Y;
this indicates that the valence bands are well separated from the conduction bands, and thus have a well defined topology. (c)
The antiferromagnetic ESFD NpSe, which has a partially filled fourfold degeneracy at �. (d) The antiferromagnetic nodal-line
semimetal CeCo2P2. A gapless nodal ring protected by mirror symmetry lies in the Z–R–A plane. (e) The antiferromagnetic
Dirac semimetal MnGeO3. One of the two Dirac nodes protected by the C3-rotation symmetry lies along the high-symmetry
line �–F. Note that there is a small bandgap at the � point. (f) The non-collinear ferrimagnetic Weyl semimetal Mn3ZnC.
Two Weyl points are pinned to the rotation-invariant line �–T by C4-rotation symmetry. Mn3ZnC also hosts nodal lines at
the Fermi level EF ; we specifically observe five nodal rings protected by the mirror symmetry (Mz) in the plane kz = 0. The
sequential number of each MSG in the BNS setting and the chemical formula of each material are provided on the top of each
panel.

predict the non-collinear ferrimagnet Mn3ZnC to be an
ES with symmetry-enforced Weyl points coexisting with
the Weyl nodal rings (Fig. 1f). Two of the Weyl points
in Mn3ZnC are pinned by the C4-rotation symmetry to
the high-symmetry line �T, and we observe five nodal
rings protected by the mirror symmetry Mz in the kz =
0 plane. In time-reversal-breaking Weyl semimetals,
divergent Berry curvature near Weyl points can give
rise to a large intrinsic anomalous Hall conductivity
[1, 2, 33, 34, 53]. We thus expect there to be a
large anomalous Hall effect in Mn3ZnC. As detailed in
Appendix J 4, we have specifically calculated the the
anomalous Hall conductivity of Mn3ZnC to be about 123
⌦�1 · cm�1.

The surface states of the enforced semimetals CeCo2P2

and MnGeO3 are shown in Fig. 2b,c, respectively.
Because the bulk states of CeCo2P2 and MnGeO3 have

clean Fermi surfaces, the surface states are well separated
from the bulk states, and should be observable in
experiment. For the Dirac semimetal MnGeO3, we
observe a discontinuous Fermi surface (Fermi-arc) on the
surface (Fig. 2d). In Appendix J, we provide further
details of our surface-state calculations.

V. CONSISTENCY WITH PREVIOUS WORKS

Our magnetic materials database
(https://www.topologicalquantumchemistry.fr/magnetic)
includes several topological materials that have
previously been reported but whose topology was
not known to be protected by symmetry eigenvalues.
For example, the non-collinear magnet Mn3Sn in MSG
63.463 (Cm

0
cm

0) has been reported as a magnetic
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FIG. 2. Topological surface states of representative magnetic topological insulator and enforced semimetal phases. (a) The
(001) surface state of the axion insulator NpBi, which has an energy gap of 30 meV. The inset shows a schematic of the chiral
hinge states on a cubic sample. (b) The (001) surface state of the enforced semimetal CeCo2P2. The drumhead-like topological
surface states connect the projections of the bulk nodal rings. (c) The (010) surface state of the enforced semimetal MnGeO3.
The bulk Dirac point along the �̄� Z̄ line is protected by C3 symmetry. However, because time-reversal symmetry is broken,
the projected band crossing on �̄� Z̃ (along -kz) is no longer protected, and is instead weakly gapped. The coordinates of Z̄
and Z̃ on the (010) surface are (0, kz = ⇡/c) and (0, kz = �⇡/c), respectively. (d) The surface Fermi arcs connecting the Dirac
points on the (010) surface of MnGeO3.

Weyl semimetal candidate with six pairs of Weyl points
[31, 54]. In our LDA+U calculation, for U =0 eV, 1
eV and 2 eV, we find Mn3Sn to be classified instead
as a magnetic topological insulator category with the
index ⌘4I = 2. ⌘4I = 2 can correspond to several
different topological phases (which we emphasize are
not all topological insulators): (1) an axion insulator,
(2) a three-dimensional quantum anomalous Hall state
with even weak Chern number (not determinable from
symmetry eigenvalues) [55], or (3) a Weyl semimetal
phase with an even number of Weyl points in half of
the BZ (not determinable from symmetry eigenvalues).
Thus our calculations on Mn3Sn for U = 0, 1, 2 eV
are consistent with the results in refs.[31, 54]. We
emphasize that if the six Weyl points in half of the
Brillouin zone were pairwise annihilated without closing
a gap at the inversion-invariant momenta, then the
gapped phase would either be an axion insulator or a
three-dimensional quantum anomalous Hall state. When
U is further increased to 3 eV and 4 eV, a topological
phase transition occurs, driving the ⌘4I = 2 phase into a
gapless enforced semimetal phase.

VI. CHEMICAL CATEGORIES

In Table III, we classify the topological magnetic
materials predicted by MTQC into three main
chemical categories, and 11 sub-categories, through
a consideration of their magnetic ions and chemical
bonding. Detailed descriptions of each category are
given in the Methods. Of the materials listed in
Table III, most antiferromagnetic insulators, which are
well studied experimentally in the case of the so-called
Mott insulators, appear to be trivial. We observe that

most of the materials in Table III are identified as
topological enforced semimetals or ESFDs, which are
defined by small densities of states at the Fermi level,
and hence lie chemically at the border between insulators
and metals.

VII. DISCUSSION

A large number of the topological materials predicted
in this work (see Appendix G for a complete tabulation)
can readily be synthesized into single crystals for the
exploration of their unusual physical properties and the
confirmation of their topological electronic structures
in different phase categories. These include materials
with non-trivial topology over the full range of U
values used in our calculations (for example, Mn3Ge,
Mn3Sn, Mn3Ir, LuFe4Ge2, and YFe4Ge2), materials
sensitive to U (for example, NdCo2 and NdCo2P2), and
interaction-driven topological materials (for example,
U2Ni2Sn and CeCuGe3).

We did not find any examples of materials whose entire
valence manifolds are fragile topological. However, it is
still possible for well isolated bands within the valence
manifold to be fragile topological if they can be expressed
as a difference of band representations. We find many
examples of energetically well isolated fragile branches
among the occupied bands. We tabulate all the fragile
branches close to the Fermi level in Appendix K.

We emphasize that there also exist topological
insulators and topological semimetals (for example,
Weyl semimetals) that cannot be diagnosed through
symmetry eigenvalues, which in this work are classified
as trivial band representations [4]. It is worth mentioning
that even the topologically trivial bands may also be
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FIG. 1. (a) Schematic showing the real-space unit cell of the structures studied in this work. a1 and a2 are the real-space
lattice vectors. The centers of the ellipses are fixed at a distance b = a0

3 from the center of the unit cell, a0 being the lattice
constant. d1 and d2 are the lengths of the principal axes of the ellipses. Higher dielectric constant shown in blue. When tiling
this pattern we use the convention that the dielectric function in any blue region is the same, including when ellipses overlap.
b-d) Photonic band structures of three representative examples studied in this work, with little group representations labeled
at the high symmetry points. b) Topologically trivial structure, with d1 = 0.52a0 and d2 = 0.31a0. c) Band structure of a
structure representative of the “obstructed atomic limit” (OAL) phase, with d1 = 0.4a0 and d2 = 0.61a0. d) Topologically
fragile structure, with d1 = 0.4a0 and d2 = 0.13a0.

next distort the rods into ellipses. These ellipses have
their principal axes of length d1 and d2, with d1 oriented
in the direction of the lattice vectors (i.e. pointing to-
wards the center of the unit cell, see Fig. 1a). The sym-
metry group of this crystal is the space group p6mm10

(# 183) [66], generated by the lattice translations, sixfold
rotational symmetry, mirror reflection about the x-axis,
and time-reversal symmetry.

We then computed the band structure for the trans-
verse magnetic (TM) modes in this crystal using the MIT
Photonic Bands package (MPB)[67], given by the spec-
trum of the magnetic wave equation

r⇥
✓

1

✏(r)
⇥H(r)

◆
=

⇣!
c

⌘2
H(r), (1)

for waves with no propagation in the z-direction. "(r) is
the position dependent permittivity, H(r) is the in-plane
magnetic field vector, ! is the frequency and c is the
speed of light. We show representative band structures
for three di↵erent cases in Fig. 1. As we will show below,
there exists a parameter regime where the second and
third bands (counting up from zero energy) are isolated
from the rest of the states in the spectrum and exhibit
fragile topology.

Photonic Band Representations. As a first step in as-
sessing the topology of bands in our photonic crystal,
we will apply the theory of topological quantum chem-
istry [18] to photonic energy bands. First, we examine
the transformation properties of the Bloch eigenstates
of our photonic crystal at each of the high symmetry
points k⇤ (�,K, and M) in the Brillouin zone. The
group of symmetry operations Gk⇤ that leaves k⇤ invari-
ant is known as the little group of k⇤; degenerate mul-
tiplets of states at each k⇤ transform under irreducible
representations (irreps) of the group Gk⇤ [68]. Using the

� K M
Trivial A1, E1 A1, E A1, B1, B2

OAL A1, E2 E,A1 B1, A1, B2

Fragile A1, E2 A1, E A1, B1, B2

TABLE I. Little group irreps for the three gapped phases of
our model. Irreps at each k-point are ordered from lowest to
highest energy. Note that while the OAL and Fragile phases
contain the same irreps in the lowest three bands, they di↵er
by a band inversion at K and M .

little group representations given in the Bilbao Crystal-
lographic Server (BCS) [69–71] along with the GTPack
package [72, 73], we compute the representation labels at
each high symmetry point in our photonic band struc-
ture [74]. Using these assignments, we identify three dis-
tinct phases of our model by looking at the irreps of the
lowest three bands (see Table I, and also the SM).
To extract topological information from the represen-

tation labels, recall [18, 56, 59] that for a set of isolated
bands i 2 {1, . . . , N} the symmetry properties of the
Bloch-wave eigenstates  ik(r) at every momentum k in
the Brillouin zone are determined by the transformation
properties of the Wannier functions

wiR(r) ⌘
X

k

e�ik·RUij(k) jk(r). (2)

Here R is a lattice vector, and Uij(k) is an N⇥N unitary
matrix function of k, and represents a choice of “gauge”
for the space spanned by the N -bands. For a topolog-
ically trivial set of bands, the matrix U can be chosen
to make the functions wnR exponentially localized about
some center rn +R. In this case, the Wannier functions
transform in a representation of the space group obtained
by acting with all elements on the space group on a set
of functions at one of the rn. These Wannier functions
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3c
<latexit sha1_base64="MKuqAr59tBl2GqSqhXl6KfxAeyc=">AAAB6XicbZC7SgNBFIbPxltcb1FLm8EgWIVdLbQRgzaWUcwFkiXMTs4mQ2Znl5lZIYSAD2BjoYitD2Nv59s4uRSa+MPAx/+fw5xzwlRwbTzv28ktLa+sruXX3Y3Nre2dwu5eTSeZYlhliUhUI6QaBZdYNdwIbKQKaRwKrIf963Fef0CleSLvzSDFIKZdySPOqLHW3SlrF4peyZuILII/g+Llp3vxCACVduGr1UlYFqM0TFCtm76XmmBIleFM4MhtZRpTyvq0i02Lksaog+Fk0hE5sk6HRImyTxoycX93DGms9SAObWVMTU/PZ2Pzv6yZmeg8GHKZZgYlm34UZYKYhIzXJh2ukBkxsECZ4nZWwnpUUWbscVx7BH9+5UWonZR8r+TfesXyFUyVhwM4hGPw4QzKcAMVqAKDCJ7gBV6dvvPsvDnv09KcM+vZhz9yPn4Aps+O7Q==</latexit><latexit sha1_base64="REimU5ALTYpkARIngFZcgsesEi8=">AAAB6XicbZC7SgNBFIbPxltcb1FLm8EgWIVdLbQRgzaWUcwFkiXMTs4mQ2Znl5lZIYS8gY2FIrZ5GHsb8W2cXAqN/jDw8f/nMOecMBVcG8/7cnJLyyura/l1d2Nza3unsLtX00mmGFZZIhLVCKlGwSVWDTcCG6lCGocC62H/epLXH1Bpnsh7M0gxiGlX8ogzaqx1d8rahaJX8qYif8GfQ/Hy3b1Ix59upV34aHUSlsUoDRNU66bvpSYYUmU4EzhyW5nGlLI+7WLToqQx6mA4nXREjqzTIVGi7JOGTN2fHUMaaz2IQ1sZU9PTi9nE/C9rZiY6D4ZcpplByWYfRZkgJiGTtUmHK2RGDCxQpridlbAeVZQZexzXHsFfXPkv1E5Kvlfyb71i+QpmysMBHMIx+HAGZbiBClSBQQSP8AwvTt95cl6dt1lpzpn37MMvOeNvmF6QYQ==</latexit><latexit sha1_base64="REimU5ALTYpkARIngFZcgsesEi8=">AAAB6XicbZC7SgNBFIbPxltcb1FLm8EgWIVdLbQRgzaWUcwFkiXMTs4mQ2Znl5lZIYS8gY2FIrZ5GHsb8W2cXAqN/jDw8f/nMOecMBVcG8/7cnJLyyura/l1d2Nza3unsLtX00mmGFZZIhLVCKlGwSVWDTcCG6lCGocC62H/epLXH1Bpnsh7M0gxiGlX8ogzaqx1d8rahaJX8qYif8GfQ/Hy3b1Ix59upV34aHUSlsUoDRNU66bvpSYYUmU4EzhyW5nGlLI+7WLToqQx6mA4nXREjqzTIVGi7JOGTN2fHUMaaz2IQ1sZU9PTi9nE/C9rZiY6D4ZcpplByWYfRZkgJiGTtUmHK2RGDCxQpridlbAeVZQZexzXHsFfXPkv1E5Kvlfyb71i+QpmysMBHMIx+HAGZbiBClSBQQSP8AwvTt95cl6dt1lpzpn37MMvOeNvmF6QYQ==</latexit><latexit sha1_base64="wzsYRuXCYXrVPUeWOR+bXuzfjIs=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0n0oMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZemEph0PO+ndLa+sbmVnm7srO7t3/gHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fj25nffuLaiEQ94iTlQUyHSkSCUbTSwyXru1Wv5s1BVolfkCoUaPTdr94gYVnMFTJJjen6XopBTjUKJvm00ssMTykb0yHvWqpozE2Qzy+dkjOrDEiUaFsKyVz9PZHT2JhJHNrOmOLILHsz8T+vm2F0HeRCpRlyxRaLokwSTMjsbTIQmjOUE0so08LeStiIasrQhlOxIfjLL6+S1kXN92r+vVet3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/AHzucPN5eNIA==</latexit>

3c
<latexit sha1_base64="MKuqAr59tBl2GqSqhXl6KfxAeyc=">AAAB6XicbZC7SgNBFIbPxltcb1FLm8EgWIVdLbQRgzaWUcwFkiXMTs4mQ2Znl5lZIYSAD2BjoYitD2Nv59s4uRSa+MPAx/+fw5xzwlRwbTzv28ktLa+sruXX3Y3Nre2dwu5eTSeZYlhliUhUI6QaBZdYNdwIbKQKaRwKrIf963Fef0CleSLvzSDFIKZdySPOqLHW3SlrF4peyZuILII/g+Llp3vxCACVduGr1UlYFqM0TFCtm76XmmBIleFM4MhtZRpTyvq0i02Lksaog+Fk0hE5sk6HRImyTxoycX93DGms9SAObWVMTU/PZ2Pzv6yZmeg8GHKZZgYlm34UZYKYhIzXJh2ukBkxsECZ4nZWwnpUUWbscVx7BH9+5UWonZR8r+TfesXyFUyVhwM4hGPw4QzKcAMVqAKDCJ7gBV6dvvPsvDnv09KcM+vZhz9yPn4Aps+O7Q==</latexit><latexit sha1_base64="REimU5ALTYpkARIngFZcgsesEi8=">AAAB6XicbZC7SgNBFIbPxltcb1FLm8EgWIVdLbQRgzaWUcwFkiXMTs4mQ2Znl5lZIYS8gY2FIrZ5GHsb8W2cXAqN/jDw8f/nMOecMBVcG8/7cnJLyyura/l1d2Nza3unsLtX00mmGFZZIhLVCKlGwSVWDTcCG6lCGocC62H/epLXH1Bpnsh7M0gxiGlX8ogzaqx1d8rahaJX8qYif8GfQ/Hy3b1Ix59upV34aHUSlsUoDRNU66bvpSYYUmU4EzhyW5nGlLI+7WLToqQx6mA4nXREjqzTIVGi7JOGTN2fHUMaaz2IQ1sZU9PTi9nE/C9rZiY6D4ZcpplByWYfRZkgJiGTtUmHK2RGDCxQpridlbAeVZQZexzXHsFfXPkv1E5Kvlfyb71i+QpmysMBHMIx+HAGZbiBClSBQQSP8AwvTt95cl6dt1lpzpn37MMvOeNvmF6QYQ==</latexit><latexit sha1_base64="REimU5ALTYpkARIngFZcgsesEi8=">AAAB6XicbZC7SgNBFIbPxltcb1FLm8EgWIVdLbQRgzaWUcwFkiXMTs4mQ2Znl5lZIYS8gY2FIrZ5GHsb8W2cXAqN/jDw8f/nMOecMBVcG8/7cnJLyyura/l1d2Nza3unsLtX00mmGFZZIhLVCKlGwSVWDTcCG6lCGocC62H/epLXH1Bpnsh7M0gxiGlX8ogzaqx1d8rahaJX8qYif8GfQ/Hy3b1Ix59upV34aHUSlsUoDRNU66bvpSYYUmU4EzhyW5nGlLI+7WLToqQx6mA4nXREjqzTIVGi7JOGTN2fHUMaaz2IQ1sZU9PTi9nE/C9rZiY6D4ZcpplByWYfRZkgJiGTtUmHK2RGDCxQpridlbAeVZQZexzXHsFfXPkv1E5Kvlfyb71i+QpmysMBHMIx+HAGZbiBClSBQQSP8AwvTt95cl6dt1lpzpn37MMvOeNvmF6QYQ==</latexit><latexit sha1_base64="wzsYRuXCYXrVPUeWOR+bXuzfjIs=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0n0oMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZemEph0PO+ndLa+sbmVnm7srO7t3/gHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fj25nffuLaiEQ94iTlQUyHSkSCUbTSwyXru1Wv5s1BVolfkCoUaPTdr94gYVnMFTJJjen6XopBTjUKJvm00ssMTykb0yHvWqpozE2Qzy+dkjOrDEiUaFsKyVz9PZHT2JhJHNrOmOLILHsz8T+vm2F0HeRCpRlyxRaLokwSTMjsbTIQmjOUE0so08LeStiIasrQhlOxIfjLL6+S1kXN92r+vVet3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/AHzucPN5eNIA==</latexit>

3c
<latexit sha1_base64="MKuqAr59tBl2GqSqhXl6KfxAeyc=">AAAB6XicbZC7SgNBFIbPxltcb1FLm8EgWIVdLbQRgzaWUcwFkiXMTs4mQ2Znl5lZIYSAD2BjoYitD2Nv59s4uRSa+MPAx/+fw5xzwlRwbTzv28ktLa+sruXX3Y3Nre2dwu5eTSeZYlhliUhUI6QaBZdYNdwIbKQKaRwKrIf963Fef0CleSLvzSDFIKZdySPOqLHW3SlrF4peyZuILII/g+Llp3vxCACVduGr1UlYFqM0TFCtm76XmmBIleFM4MhtZRpTyvq0i02Lksaog+Fk0hE5sk6HRImyTxoycX93DGms9SAObWVMTU/PZ2Pzv6yZmeg8GHKZZgYlm34UZYKYhIzXJh2ukBkxsECZ4nZWwnpUUWbscVx7BH9+5UWonZR8r+TfesXyFUyVhwM4hGPw4QzKcAMVqAKDCJ7gBV6dvvPsvDnv09KcM+vZhz9yPn4Aps+O7Q==</latexit><latexit sha1_base64="REimU5ALTYpkARIngFZcgsesEi8=">AAAB6XicbZC7SgNBFIbPxltcb1FLm8EgWIVdLbQRgzaWUcwFkiXMTs4mQ2Znl5lZIYS8gY2FIrZ5GHsb8W2cXAqN/jDw8f/nMOecMBVcG8/7cnJLyyura/l1d2Nza3unsLtX00mmGFZZIhLVCKlGwSVWDTcCG6lCGocC62H/epLXH1Bpnsh7M0gxiGlX8ogzaqx1d8rahaJX8qYif8GfQ/Hy3b1Ix59upV34aHUSlsUoDRNU66bvpSYYUmU4EzhyW5nGlLI+7WLToqQx6mA4nXREjqzTIVGi7JOGTN2fHUMaaz2IQ1sZU9PTi9nE/C9rZiY6D4ZcpplByWYfRZkgJiGTtUmHK2RGDCxQpridlbAeVZQZexzXHsFfXPkv1E5Kvlfyb71i+QpmysMBHMIx+HAGZbiBClSBQQSP8AwvTt95cl6dt1lpzpn37MMvOeNvmF6QYQ==</latexit><latexit sha1_base64="REimU5ALTYpkARIngFZcgsesEi8=">AAAB6XicbZC7SgNBFIbPxltcb1FLm8EgWIVdLbQRgzaWUcwFkiXMTs4mQ2Znl5lZIYS8gY2FIrZ5GHsb8W2cXAqN/jDw8f/nMOecMBVcG8/7cnJLyyura/l1d2Nza3unsLtX00mmGFZZIhLVCKlGwSVWDTcCG6lCGocC62H/epLXH1Bpnsh7M0gxiGlX8ogzaqx1d8rahaJX8qYif8GfQ/Hy3b1Ix59upV34aHUSlsUoDRNU66bvpSYYUmU4EzhyW5nGlLI+7WLToqQx6mA4nXREjqzTIVGi7JOGTN2fHUMaaz2IQ1sZU9PTi9nE/C9rZiY6D4ZcpplByWYfRZkgJiGTtUmHK2RGDCxQpridlbAeVZQZexzXHsFfXPkv1E5Kvlfyb71i+QpmysMBHMIx+HAGZbiBClSBQQSP8AwvTt95cl6dt1lpzpn37MMvOeNvmF6QYQ==</latexit><latexit sha1_base64="wzsYRuXCYXrVPUeWOR+bXuzfjIs=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0n0oMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZemEph0PO+ndLa+sbmVnm7srO7t3/gHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fj25nffuLaiEQ94iTlQUyHSkSCUbTSwyXru1Wv5s1BVolfkCoUaPTdr94gYVnMFTJJjen6XopBTjUKJvm00ssMTykb0yHvWqpozE2Qzy+dkjOrDEiUaFsKyVz9PZHT2JhJHNrOmOLILHsz8T+vm2F0HeRCpRlyxRaLokwSTMjsbTIQmjOUE0so08LeStiIasrQhlOxIfjLL6+S1kXN92r+vVet3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/AHzucPN5eNIA==</latexit>

6d
<latexit sha1_base64="kDtEU+qs7yl597d1uVxR3DCSQnE=">AAAB6XicbZDLSgMxFIbP1Fsdb1WXboJFcFUyLtSNWHTjsoq9QDuUTCbThmYyQ5IRylDwAdy4UMStD+PenW9jello6w+Bj/8/h5xzglRwbTD+dgpLyyura8V1d2Nza3untLvX0EmmKKvTRCSqFRDNBJesbrgRrJUqRuJAsGYwuB7nzQemNE/kvRmmzI9JT/KIU2KsdXcadktlXMEToUXwZlC+/HQvHgGg1i19dcKEZjGThgqiddvDqfFzogyngo3cTqZZSuiA9FjboiQx034+mXSEjqwToihR9kmDJu7vjpzEWg/jwFbGxPT1fDY2/8vamYnO/ZzLNDNM0ulHUSaQSdB4bRRyxagRQwuEKm5nRbRPFKHGHse1R/DmV16ExknFwxXvFperVzBVEQ7gEI7BgzOowg3UoA4UIniCF3h1Bs6z8+a8T0sLzqxnH/7I+fgBrOKO8Q==</latexit><latexit sha1_base64="HHxLK7DYSXmH1GIbxSfmLLZ2Kuk=">AAAB6XicbZDLSgMxFIbP1Fsdb1WXboJFcFUyLtSNWHTjsoq9QDuUTCbThmYyQ5IRytA3cONCEbd9GPduxLcxvSy0+kPg4//PIeecIBVcG4y/nMLS8srqWnHd3djc2t4p7e41dJIpyuo0EYlqBUQzwSWrG24Ea6WKkTgQrBkMrid584EpzRN5b4Yp82PSkzzilBhr3Z2G3VIZV/BU6C94cyhfvrsX6fjTrXVLH50woVnMpKGCaN32cGr8nCjDqWAjt5NplhI6ID3WtihJzLSfTycdoSPrhChKlH3SoKn7syMnsdbDOLCVMTF9vZhNzP+ydmaicz/nMs0Mk3T2UZQJZBI0WRuFXDFqxNACoYrbWRHtE0Woscdx7RG8xZX/QuOk4uGKd4vL1SuYqQgHcAjH4MEZVOEGalAHChE8wjO8OAPnyXl13malBWfesw+/5Iy/AZ5xkGU=</latexit><latexit sha1_base64="HHxLK7DYSXmH1GIbxSfmLLZ2Kuk=">AAAB6XicbZDLSgMxFIbP1Fsdb1WXboJFcFUyLtSNWHTjsoq9QDuUTCbThmYyQ5IRytA3cONCEbd9GPduxLcxvSy0+kPg4//PIeecIBVcG4y/nMLS8srqWnHd3djc2t4p7e41dJIpyuo0EYlqBUQzwSWrG24Ea6WKkTgQrBkMrid584EpzRN5b4Yp82PSkzzilBhr3Z2G3VIZV/BU6C94cyhfvrsX6fjTrXVLH50woVnMpKGCaN32cGr8nCjDqWAjt5NplhI6ID3WtihJzLSfTycdoSPrhChKlH3SoKn7syMnsdbDOLCVMTF9vZhNzP+ydmaicz/nMs0Mk3T2UZQJZBI0WRuFXDFqxNACoYrbWRHtE0Woscdx7RG8xZX/QuOk4uGKd4vL1SuYqQgHcAjH4MEZVOEGalAHChE8wjO8OAPnyXl13malBWfesw+/5Iy/AZ5xkGU=</latexit><latexit sha1_base64="B6qVSBWbXxrSaTF2mTUBELdaxzE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0k8qMeiF49V7Ae0oWw2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAqujet+O6W19Y3NrfJ2ZWd3b/+genjU1kmmGLZYIhLVDahGwSW2DDcCu6lCGgcCO8H4duZ3nlBpnshHM0nRj+lQ8ogzaqz0cBkOqjW37s5BVolXkBoUaA6qX/0wYVmM0jBBte55bmr8nCrDmcBppZ9pTCkb0yH2LJU0Ru3n80un5MwqIYkSZUsaMld/T+Q01noSB7Yzpmakl72Z+J/Xy0x07edcpplByRaLokwQk5DZ2yTkCpkRE0soU9zeStiIKsqMDadiQ/CWX14l7Yu659a9e7fWuCniKMMJnMI5eHAFDbiDJrSAQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fPaqNJA==</latexit>6d

<latexit sha1_base64="kDtEU+qs7yl597d1uVxR3DCSQnE=">AAAB6XicbZDLSgMxFIbP1Fsdb1WXboJFcFUyLtSNWHTjsoq9QDuUTCbThmYyQ5IRylDwAdy4UMStD+PenW9jello6w+Bj/8/h5xzglRwbTD+dgpLyyura8V1d2Nza3untLvX0EmmKKvTRCSqFRDNBJesbrgRrJUqRuJAsGYwuB7nzQemNE/kvRmmzI9JT/KIU2KsdXcadktlXMEToUXwZlC+/HQvHgGg1i19dcKEZjGThgqiddvDqfFzogyngo3cTqZZSuiA9FjboiQx034+mXSEjqwToihR9kmDJu7vjpzEWg/jwFbGxPT1fDY2/8vamYnO/ZzLNDNM0ulHUSaQSdB4bRRyxagRQwuEKm5nRbRPFKHGHse1R/DmV16ExknFwxXvFperVzBVEQ7gEI7BgzOowg3UoA4UIniCF3h1Bs6z8+a8T0sLzqxnH/7I+fgBrOKO8Q==</latexit><latexit sha1_base64="HHxLK7DYSXmH1GIbxSfmLLZ2Kuk=">AAAB6XicbZDLSgMxFIbP1Fsdb1WXboJFcFUyLtSNWHTjsoq9QDuUTCbThmYyQ5IRytA3cONCEbd9GPduxLcxvSy0+kPg4//PIeecIBVcG4y/nMLS8srqWnHd3djc2t4p7e41dJIpyuo0EYlqBUQzwSWrG24Ea6WKkTgQrBkMrid584EpzRN5b4Yp82PSkzzilBhr3Z2G3VIZV/BU6C94cyhfvrsX6fjTrXVLH50woVnMpKGCaN32cGr8nCjDqWAjt5NplhI6ID3WtihJzLSfTycdoSPrhChKlH3SoKn7syMnsdbDOLCVMTF9vZhNzP+ydmaicz/nMs0Mk3T2UZQJZBI0WRuFXDFqxNACoYrbWRHtE0Woscdx7RG8xZX/QuOk4uGKd4vL1SuYqQgHcAjH4MEZVOEGalAHChE8wjO8OAPnyXl13malBWfesw+/5Iy/AZ5xkGU=</latexit><latexit sha1_base64="HHxLK7DYSXmH1GIbxSfmLLZ2Kuk=">AAAB6XicbZDLSgMxFIbP1Fsdb1WXboJFcFUyLtSNWHTjsoq9QDuUTCbThmYyQ5IRytA3cONCEbd9GPduxLcxvSy0+kPg4//PIeecIBVcG4y/nMLS8srqWnHd3djc2t4p7e41dJIpyuo0EYlqBUQzwSWrG24Ea6WKkTgQrBkMrid584EpzRN5b4Yp82PSkzzilBhr3Z2G3VIZV/BU6C94cyhfvrsX6fjTrXVLH50woVnMpKGCaN32cGr8nCjDqWAjt5NplhI6ID3WtihJzLSfTycdoSPrhChKlH3SoKn7syMnsdbDOLCVMTF9vZhNzP+ydmaicz/nMs0Mk3T2UZQJZBI0WRuFXDFqxNACoYrbWRHtE0Woscdx7RG8xZX/QuOk4uGKd4vL1SuYqQgHcAjH4MEZVOEGalAHChE8wjO8OAPnyXl13malBWfesw+/5Iy/AZ5xkGU=</latexit><latexit sha1_base64="B6qVSBWbXxrSaTF2mTUBELdaxzE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0k8qMeiF49V7Ae0oWw2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAqujet+O6W19Y3NrfJ2ZWd3b/+genjU1kmmGLZYIhLVDahGwSW2DDcCu6lCGgcCO8H4duZ3nlBpnshHM0nRj+lQ8ogzaqz0cBkOqjW37s5BVolXkBoUaA6qX/0wYVmM0jBBte55bmr8nCrDmcBppZ9pTCkb0yH2LJU0Ru3n80un5MwqIYkSZUsaMld/T+Q01noSB7Yzpmakl72Z+J/Xy0x07edcpplByRaLokwQk5DZ2yTkCpkRE0soU9zeStiIKsqMDadiQ/CWX14l7Yu659a9e7fWuCniKMMJnMI5eHAFDbiDJrSAQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fPaqNJA==</latexit>

6d
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(b)

FIG. 1. Unit cell and first Brillouin zone for p6mm10. (a) Shows the real space unit cell with relevant Wycko↵ positions
labelled. The 1a position is indicated by a black circle , the 2b position by blue squares, the 3c position by red stars, and the
6d position by pink crosses. (b) shows the first Brillouin zone with the high symmetry �, M , and K points labelled. Note that
little group and site symmetry representations of points labelled by black circles are given by irreps of C6v. Irreps for all blue
squares are given by labels for C3v. Irreps for all red stars are given by labels for C2v

⇢ E C2 m1 m2

A1 1 1 1 1
A2 1 1 �1 �1
B1 1 �1 �1 1
B2 1 �1 1 �1

(a)

⇢ E m C3

A1 1 1 1
A2 1 �1 1
E 2 0 �1

(b)

⇢ E m1 C2 C3 m2 C6

A1 1 1 1 1 1 1
A2 1 �1 1 1 �1 1
B1 1 �1 �1 1 1 �1
B2 1 1 �1 1 �1 �1
E1 2 0 �2 �1 0 1
E2 2 0 2 �1 0 �1

(c)

TABLE I. Character tables for the point groups used in this work. (a) is the character table for C2v, which labels representations
of both G3c, the stabilizer group of the 3c position, as well as of the little groups GM , GM0 , and GM00 of the M points. (b)
is the character table for C3v, which labels representations of both G2b, the stabilizer group of the 2b position, as well as of
the little groups GK and GK0 of the K points. (c) is the character table for C6v which labels representations of both G1a, the
stabilizer group of the 1a position, as well as of the little group G� of the � point.

which is defined by a maximal Wycko↵ position (in this case, 1a, 2b, or 3c), along with an irrep of the corresponding
site-symmetry group. These will be denoted

(⇢ " G)q, (3)

where ⇢ is an irrep of the site symmetry group Gq of the Wycko↵ position q. Since each EBR contains a finite
number of bands, we can define a direct sum � of EBRs by concatenating bands; the multiplicities of little group
irreps appearing in a sum of EBRs is a sum of the multiplicities in each EBR. Similarly, at the level of little group
irreps we can define a formal di↵erence of EBRs[4, 5] as well. We define

S ⌘ (⇢1 " G)q1  (⇢2 " G)q2 (4)

to be the set of little group irrep multiplicities that one obtains by subtracting the irrep multiplicities in (⇢2 " G)q2

from those in (⇢1 " G)q1 The full set of elementary band representations for all space groups can be found in Ref. [6].
Below in Table II we give the little group irreps which appear in the EBRs relevant to this work.
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EBR � K M

(A1 " G)1a A1 A1 A1

(E1 " G)1a E1 E B1 �B2

(A1 " G)3c A1 � E2 E �A1 A1 �B1 �B2

TABLE II. EBRs appearing in the lowest three bands of our photonic crystal structures. The first column gives the label of
the EBR. The second column gives the little group irreps describing bands at � in the EBR. Similarly, third column gives the
little group irreps describing bands at K, and the fourth column the irreps for bands at M .

REVIEW OF WILSON LOOPS

In this section, we recall some facts about Wilson loops which are used in the main text. We will also prove the
qunatization results used in the main text, in the interest of creating a self-contained work. The Wilson loop matrix

W (k1) = P exp

✓
i

I
A2(k1, k2)dk2

◆
(5)

can be discretized as a numerically tractable product

W (k1)mn = hum,(k1,⇡)|
⇡ �⇡Y

k2

P (k1, k2)|un,(k1,�⇡)i (6)

where we have introduced the projector P (k) =
P

n |unkihunk| onto a set of disconnected bands, and the infinite path
ordered product is shorthand for

⇡ �⇡Y

k2

P (k1, k2) = lim
�!0

P (k1,⇡)P (k1,⇡ ��) · · ·P (k1,�)P (k1,�⇡) (7)

The Wilson loop is a unitary matrix, and the phases {✓i} = �ispec(logW ) of its eigenvalues are gauge-invariant
modulo 2⇡. These phases give the centers of hybrid Wannier functions (functions localized in the a2 direction and
extended in the a1 direction) supported by the bands in the image of the projectors P [7, 8].

In the case when we evaluate the Wilson loop for a small number of bands, the irreps of the Bloch functions at high
symmetry momenta can place constraints on the allowed phases {✓i}. First note that our photonic crystals have both
C2 rotation and time reversal (T ) symmetries. The combined symmetry C2T is antiunitary, and leaves all k points
invariant. Since each projector P (k) is C2T invariant, the net e↵ect of this symmetry on the Wilson loop is to take
W (k1) to itself. Imposing this symmetry, and recalling that it is antiunitary, we deduce that W (k) and W ⇤(k) must
have the same spectrum. The phases ✓i thus come in pairs {✓i,�✓i}, or else ✓i = 0,⇡. If we compute this Wilson loop
for a single isolated band, it must have either ✓ = 0 or ✓ = ⇡.

In the case of one or two occupied bands, we can determine {✓i} solely from the eigenvalues of C2 symmetry at �
and M . To see this, let us consider first W (0). Starting with the definition Eq. (7) and splitting the product in half,
we find

W (0) = hum,(0,⇡)|
⇡ �⇡Y

k2

P (0, k2)|un,(0,�⇡)i (8)

= hum,(0,⇡)|
⇡ 0Y

k2

P (0, k2)|u`,(0,0)ihu`,(0,0)|
0 �⇡Y

k2

P (0, k2)|un,(0,�⇡)i (9)

⌘ W⇡ 0(0)W0 �⇡(0) (10)

Now, with C2 symmetry we can write

C2|um(0,�⇡)i = |un(0,pi)iBnm
M (C2), (11)

C2|um(0,0)i = |un(0,0)iBnm
� (C2), (12)

where Bmn
� (C2) and Bmn

M (C2) is the matrix representations of C2 at the � and M points, respectively. Inserting the
identity operator C2

2 in the expression for W0 �⇡ and using the invariance of the projectors, we find

W0 �⇡(0) = B�(C2)W
†
⇡ 0(0)BM (C2) (13)

S. G. Johnson and J. D. Joannopoulos, Optics express 8, 173 (2001). 
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FIG. 1. (a) Schematic showing the real-space unit cell of the structures studied in this work. a1 and a2 are the real-space
lattice vectors. The centers of the ellipses are fixed at a distance b = a0

3 from the center of the unit cell, a0 being the lattice
constant. d1 and d2 are the lengths of the principal axes of the ellipses. Higher dielectric constant shown in blue. When tiling
this pattern we use the convention that the dielectric function in any blue region is the same, including when ellipses overlap.
b-d) Photonic band structures of three representative examples studied in this work, with little group representations labeled
at the high symmetry points. b) Topologically trivial structure, with d1 = 0.52a0 and d2 = 0.31a0. c) Band structure of a
structure representative of the “obstructed atomic limit” (OAL) phase, with d1 = 0.4a0 and d2 = 0.61a0. d) Topologically
fragile structure, with d1 = 0.4a0 and d2 = 0.13a0.

next distort the rods into ellipses. These ellipses have
their principal axes of length d1 and d2, with d1 oriented
in the direction of the lattice vectors (i.e. pointing to-
wards the center of the unit cell, see Fig. 1a). The sym-
metry group of this crystal is the space group p6mm10

(# 183) [66], generated by the lattice translations, sixfold
rotational symmetry, mirror reflection about the x-axis,
and time-reversal symmetry.

We then computed the band structure for the trans-
verse magnetic (TM) modes in this crystal using the MIT
Photonic Bands package (MPB)[67], given by the spec-
trum of the magnetic wave equation

r⇥
✓

1

✏(r)
⇥H(r)

◆
=

⇣!
c

⌘2
H(r), (1)

for waves with no propagation in the z-direction. "(r) is
the position dependent permittivity, H(r) is the in-plane
magnetic field vector, ! is the frequency and c is the
speed of light. We show representative band structures
for three di↵erent cases in Fig. 1. As we will show below,
there exists a parameter regime where the second and
third bands (counting up from zero energy) are isolated
from the rest of the states in the spectrum and exhibit
fragile topology.

Photonic Band Representations. As a first step in as-
sessing the topology of bands in our photonic crystal,
we will apply the theory of topological quantum chem-
istry [18] to photonic energy bands. First, we examine
the transformation properties of the Bloch eigenstates
of our photonic crystal at each of the high symmetry
points k⇤ (�,K, and M) in the Brillouin zone. The
group of symmetry operations Gk⇤ that leaves k⇤ invari-
ant is known as the little group of k⇤; degenerate mul-
tiplets of states at each k⇤ transform under irreducible
representations (irreps) of the group Gk⇤ [68]. Using the

� K M
Trivial A1, E1 A1, E A1, B1, B2

OAL A1, E2 E,A1 B1, A1, B2

Fragile A1, E2 A1, E A1, B1, B2

TABLE I. Little group irreps for the three gapped phases of
our model. Irreps at each k-point are ordered from lowest to
highest energy. Note that while the OAL and Fragile phases
contain the same irreps in the lowest three bands, they di↵er
by a band inversion at K and M .

little group representations given in the Bilbao Crystal-
lographic Server (BCS) [69–71] along with the GTPack
package [72, 73], we compute the representation labels at
each high symmetry point in our photonic band struc-
ture [74]. Using these assignments, we identify three dis-
tinct phases of our model by looking at the irreps of the
lowest three bands (see Table I, and also the SM).
To extract topological information from the represen-

tation labels, recall [18, 56, 59] that for a set of isolated
bands i 2 {1, . . . , N} the symmetry properties of the
Bloch-wave eigenstates  ik(r) at every momentum k in
the Brillouin zone are determined by the transformation
properties of the Wannier functions

wiR(r) ⌘
X

k

e�ik·RUij(k) jk(r). (2)

Here R is a lattice vector, and Uij(k) is an N⇥N unitary
matrix function of k, and represents a choice of “gauge”
for the space spanned by the N -bands. For a topolog-
ically trivial set of bands, the matrix U can be chosen
to make the functions wnR exponentially localized about
some center rn +R. In this case, the Wannier functions
transform in a representation of the space group obtained
by acting with all elements on the space group on a set
of functions at one of the rn. These Wannier functions
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topological implications for the first time. We show that
there exist a class of structures where the photonic bands
cannot support exponentially localized, symmetric Wan-
nier functions, and by computing the bulk winding num-
ber we verify that these bands have nontrivial fragile
topology. In doing so, we also demonstrate the utility
of TQC and “symmetry indicator” methods[21, 51] for
computing photonic topological invariants. Finally, we
comment on potential applications of TQC and
fragile topology to photonic systems.

Model. As a starting point for our design, we chose a
two-dimensional triangular lattice of lattice constant a0
with a unit cell of six circular silicon rods (" = 11.7) of
diameter d arranged in a hexagonal pattern. This non-
primitive (enlarged) unit cell is necessary, because we
next distort the rods into ellipses. These ellipses have
their principal axes of length d1 and d2, with d1 oriented
in the direction of the lattice vectors (i.e. pointing to-
wards the center of the unit cell, see Fig. 1a). The sym-
metry group of this crystal is the space group p6mm10

(# 183) [68], generated by the lattice translations, sixfold
rotational symmetry, mirror reflection about the x-axis,
and time-reversal symmetry.

We then computed the band structure for the trans-
verse magnetic (TM) modes in this crystal using the MIT
Photonic Bands package (MPB)[69], given by the spec-
trum of the magnetic wave equation

r⇥
✓

1

✏(r)
⇥H(r)

◆
=

⇣!
c

⌘2
H(r), (1)

for waves with no propagation in the z-direction. "(r)
is the position dependent permittivity, H(r) is the in-
plane magnetic field vector, ! is the frequency and c is
the speed of light. We show representative band struc-
tures for three di↵erent cases in Fig. 1. In Fig. 2, we
summarize our results as a function of the axis
lengths d1 and d2. As we will show below, there exists
a parameter regime where the second and third bands
(counting up from zero energy) are isolated from the rest
of the states in the spectrum and exhibit fragile topology.

Photonic Band Representations. As a first step in as-
sessing the topological properties of bands in our pho-
tonic crystal, we will apply the theory of TQC [18] to pho-
tonic energy bands. First, we examine the transforma-
tion properties of the Bloch eigenstates of our photonic
crystal at each of the high symmetry points k⇤ (�,K, and
M) in the Brillouin zone. The group of symmetry oper-
ations Gk⇤ that leaves k⇤ invariant is known as the little
group of k⇤; degenerate multiplets of states at each k⇤
transform under irreducible representations of the group
Gk⇤ [70]. Using the little group representations given in
the Bilbao Crystallographic Server (BCS) [71–73] along
with the GTPack package [74, 75], we compute the rep-
resentation labels at each high symmetry point in our
photonic band structure [76]. Using these assignments,
we identify three distinct phases of our model by looking

� K M
Trivial A1, E1 A1, E A1, B1, B2

OAL A1, E2 E,A1 B1, A1, B2

Fragile A1, E2 A1, E A1, B1, B2

TABLE I. Little group irreps for the three gapped phases of
our model. Irreps at each k-point are ordered from lowest to
highest energy. Note that while the OAL and fragile bands
contain the same irreps in the lowest three bands, they di↵er
by a band inversion at K and M .

at the irreps of the lowest three bands (see Table I, and
also the SM).
To extract topological information from the represen-

tation labels, recall [18, 58, 61] that for a set of isolated
bands i 2 {1, . . . , N} the symmetry properties of the
Bloch-wave eigenstates  ik(r) at every momentum k in
the Brillouin zone are determined by the transformation
properties of the Wannier functions

wiR(r) ⌘
X

k

e�ik·RUij(k) jk(r). (2)

Here R is a lattice vector, and Uij(k) is an N⇥N unitary
matrix function of k, and represents a choice of “gauge”
for the space spanned by the N -bands. For a topolog-
ically trivial set of bands, the matrix U can be chosen
to make the functions wnR exponentially localized about
some center rn +R. In this case, the Wannier functions
transform in a representation of the space group obtained
by acting with all elements on the space group on a set
of functions at one of the rn. These Wannier functions
carry a band representation. All band representations
can be obtained as a sum of elementary band representa-
tions (EBRs), which are tabulated in Ref. [77, 78]. Each
EBR is identified by its space group, the Wycko↵ posi-
tion which labels the set rn of centers, and an irrep of the
group Grn which leaves each center invariant (see SM).
Inverting this observation, any set of bands that cannot
be expressed as a sum of EBRs does not admit exponen-
tially localized and symmetric Wannier functions, and is
therefore topologically nontrivial. Note that these con-
siderations apply equally well to both photonic and elec-
tronic crystals.
Using the irrep labels given in Table I, along with the

catalogue of EBRs in the BCS [71–73], we can iden-
tify the band representations describing each phase of
our photonic crystal (See Table II of the SM). With
d1 = 0.52a0, d2 = 0.31a0, we see that the lowest band
carries irrep labels consistent with the band representa-
tion (A1 " G)1a, consisting of photonic Wannier functions
centered at the origin with zero angular momentum (s-
like)[79]. Bands two and three are connected to each
other, and are consistent with the (E1 " G)1a band rep-
resentation, with a pair of Wannier functions centered at
the origin and transforming like a dipole (p-like). this is
indicated as the “trivial” phase in Fig. 2, as all pho-
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FIG. 1. (a) Schematic showing the real-space unit cell of the structures studied in this work. a1 and a2 are the real-space
lattice vectors. The centers of the ellipses are fixed at a distance b = a0

3 from the center of the unit cell, a0 being the lattice
constant. d1 and d2 are the lengths of the principal axes of the ellipses. Higher dielectric constant shown in blue. When tiling
this pattern we use the convention that the dielectric function in any blue region is the same, including when ellipses overlap.
b-d) Photonic band structures of three representative examples studied in this work, with little group representations labeled
at the high symmetry points. b) Topologically trivial structure, with d1 = 0.52a0 and d2 = 0.31a0. c) Band structure of a
structure representative of the “obstructed atomic limit” (OAL) phase, with d1 = 0.4a0 and d2 = 0.61a0. d) Topologically
fragile structure, with d1 = 0.4a0 and d2 = 0.13a0.

next distort the rods into ellipses. These ellipses have
their principal axes of length d1 and d2, with d1 oriented
in the direction of the lattice vectors (i.e. pointing to-
wards the center of the unit cell, see Fig. 1a). The sym-
metry group of this crystal is the space group p6mm10

(# 183) [66], generated by the lattice translations, sixfold
rotational symmetry, mirror reflection about the x-axis,
and time-reversal symmetry.

We then computed the band structure for the trans-
verse magnetic (TM) modes in this crystal using the MIT
Photonic Bands package (MPB)[67], given by the spec-
trum of the magnetic wave equation

r⇥
✓

1

✏(r)
⇥H(r)

◆
=

⇣!
c

⌘2
H(r), (1)

for waves with no propagation in the z-direction. "(r) is
the position dependent permittivity, H(r) is the in-plane
magnetic field vector, ! is the frequency and c is the
speed of light. We show representative band structures
for three di↵erent cases in Fig. 1. As we will show below,
there exists a parameter regime where the second and
third bands (counting up from zero energy) are isolated
from the rest of the states in the spectrum and exhibit
fragile topology.

Photonic Band Representations. As a first step in as-
sessing the topology of bands in our photonic crystal,
we will apply the theory of topological quantum chem-
istry [18] to photonic energy bands. First, we examine
the transformation properties of the Bloch eigenstates
of our photonic crystal at each of the high symmetry
points k⇤ (�,K, and M) in the Brillouin zone. The
group of symmetry operations Gk⇤ that leaves k⇤ invari-
ant is known as the little group of k⇤; degenerate mul-
tiplets of states at each k⇤ transform under irreducible
representations (irreps) of the group Gk⇤ [68]. Using the

� K M
Trivial A1, E1 A1, E A1, B1, B2

OAL A1, E2 E,A1 B1, A1, B2

Fragile A1, E2 A1, E A1, B1, B2

TABLE I. Little group irreps for the three gapped phases of
our model. Irreps at each k-point are ordered from lowest to
highest energy. Note that while the OAL and Fragile phases
contain the same irreps in the lowest three bands, they di↵er
by a band inversion at K and M .

little group representations given in the Bilbao Crystal-
lographic Server (BCS) [69–71] along with the GTPack
package [72, 73], we compute the representation labels at
each high symmetry point in our photonic band struc-
ture [74]. Using these assignments, we identify three dis-
tinct phases of our model by looking at the irreps of the
lowest three bands (see Table I, and also the SM).
To extract topological information from the represen-

tation labels, recall [18, 56, 59] that for a set of isolated
bands i 2 {1, . . . , N} the symmetry properties of the
Bloch-wave eigenstates  ik(r) at every momentum k in
the Brillouin zone are determined by the transformation
properties of the Wannier functions

wiR(r) ⌘
X

k

e�ik·RUij(k) jk(r). (2)

Here R is a lattice vector, and Uij(k) is an N⇥N unitary
matrix function of k, and represents a choice of “gauge”
for the space spanned by the N -bands. For a topolog-
ically trivial set of bands, the matrix U can be chosen
to make the functions wnR exponentially localized about
some center rn +R. In this case, the Wannier functions
transform in a representation of the space group obtained
by acting with all elements on the space group on a set
of functions at one of the rn. These Wannier functions
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FIG. 1. (a) Schematic showing the real-space unit cell of the structures studied in this work. a1 and a2 are the real-space
lattice vectors. The centers of the ellipses are fixed at a distance b = a0

3 from the center of the unit cell, a0 being the lattice
constant. d1 and d2 are the lengths of the principal axes of the ellipses. Higher dielectric constant shown in blue. When tiling
this pattern we use the convention that the dielectric function in any blue region is the same, including when ellipses overlap.
b-d) Photonic band structures of three representative examples studied in this work, with little group representations labeled
at the high symmetry points. b) Topologically trivial structure, with d1 = 0.52a0 and d2 = 0.31a0. c) Band structure of a
structure representative of the “obstructed atomic limit” (OAL) phase, with d1 = 0.4a0 and d2 = 0.61a0. d) Topologically
fragile structure, with d1 = 0.4a0 and d2 = 0.13a0.

next distort the rods into ellipses. These ellipses have
their principal axes of length d1 and d2, with d1 oriented
in the direction of the lattice vectors (i.e. pointing to-
wards the center of the unit cell, see Fig. 1a). The sym-
metry group of this crystal is the space group p6mm10

(# 183) [66], generated by the lattice translations, sixfold
rotational symmetry, mirror reflection about the x-axis,
and time-reversal symmetry.

We then computed the band structure for the trans-
verse magnetic (TM) modes in this crystal using the MIT
Photonic Bands package (MPB)[67], given by the spec-
trum of the magnetic wave equation
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c
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H(r), (1)

for waves with no propagation in the z-direction. "(r) is
the position dependent permittivity, H(r) is the in-plane
magnetic field vector, ! is the frequency and c is the
speed of light. We show representative band structures
for three di↵erent cases in Fig. 1. As we will show below,
there exists a parameter regime where the second and
third bands (counting up from zero energy) are isolated
from the rest of the states in the spectrum and exhibit
fragile topology.

Photonic Band Representations. As a first step in as-
sessing the topology of bands in our photonic crystal,
we will apply the theory of topological quantum chem-
istry [18] to photonic energy bands. First, we examine
the transformation properties of the Bloch eigenstates
of our photonic crystal at each of the high symmetry
points k⇤ (�,K, and M) in the Brillouin zone. The
group of symmetry operations Gk⇤ that leaves k⇤ invari-
ant is known as the little group of k⇤; degenerate mul-
tiplets of states at each k⇤ transform under irreducible
representations (irreps) of the group Gk⇤ [68]. Using the

� K M
Trivial A1, E1 A1, E A1, B1, B2

OAL A1, E2 E,A1 B1, A1, B2

Fragile A1, E2 A1, E A1, B1, B2

TABLE I. Little group irreps for the three gapped phases of
our model. Irreps at each k-point are ordered from lowest to
highest energy. Note that while the OAL and Fragile phases
contain the same irreps in the lowest three bands, they di↵er
by a band inversion at K and M .

little group representations given in the Bilbao Crystal-
lographic Server (BCS) [69–71] along with the GTPack
package [72, 73], we compute the representation labels at
each high symmetry point in our photonic band struc-
ture [74]. Using these assignments, we identify three dis-
tinct phases of our model by looking at the irreps of the
lowest three bands (see Table I, and also the SM).
To extract topological information from the represen-

tation labels, recall [18, 56, 59] that for a set of isolated
bands i 2 {1, . . . , N} the symmetry properties of the
Bloch-wave eigenstates  ik(r) at every momentum k in
the Brillouin zone are determined by the transformation
properties of the Wannier functions

wiR(r) ⌘
X

k

e�ik·RUij(k) jk(r). (2)

Here R is a lattice vector, and Uij(k) is an N⇥N unitary
matrix function of k, and represents a choice of “gauge”
for the space spanned by the N -bands. For a topolog-
ically trivial set of bands, the matrix U can be chosen
to make the functions wnR exponentially localized about
some center rn +R. In this case, the Wannier functions
transform in a representation of the space group obtained
by acting with all elements on the space group on a set
of functions at one of the rn. These Wannier functions
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FIG. 1. (a) Schematic showing the real-space unit cell of the structures studied in this work. a1 and a2 are the real-space
lattice vectors. The centers of the ellipses are fixed at a distance b = a0

3 from the center of the unit cell, a0 being the lattice
constant. d1 and d2 are the lengths of the principal axes of the ellipses. Higher dielectric constant shown in blue. When tiling
this pattern we use the convention that the dielectric function in any blue region is the same, including when ellipses overlap.
b-d) Photonic band structures of three representative examples studied in this work, with little group representations labeled
at the high symmetry points. b) Topologically trivial structure, with d1 = 0.52a0 and d2 = 0.31a0. c) Band structure of a
structure representative of the “obstructed atomic limit” (OAL) phase, with d1 = 0.4a0 and d2 = 0.61a0. d) Topologically
fragile structure, with d1 = 0.4a0 and d2 = 0.13a0.

next distort the rods into ellipses. These ellipses have
their principal axes of length d1 and d2, with d1 oriented
in the direction of the lattice vectors (i.e. pointing to-
wards the center of the unit cell, see Fig. 1a). The sym-
metry group of this crystal is the space group p6mm10

(# 183) [66], generated by the lattice translations, sixfold
rotational symmetry, mirror reflection about the x-axis,
and time-reversal symmetry.

We then computed the band structure for the trans-
verse magnetic (TM) modes in this crystal using the MIT
Photonic Bands package (MPB)[67], given by the spec-
trum of the magnetic wave equation
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for waves with no propagation in the z-direction. "(r) is
the position dependent permittivity, H(r) is the in-plane
magnetic field vector, ! is the frequency and c is the
speed of light. We show representative band structures
for three di↵erent cases in Fig. 1. As we will show below,
there exists a parameter regime where the second and
third bands (counting up from zero energy) are isolated
from the rest of the states in the spectrum and exhibit
fragile topology.

Photonic Band Representations. As a first step in as-
sessing the topology of bands in our photonic crystal,
we will apply the theory of topological quantum chem-
istry [18] to photonic energy bands. First, we examine
the transformation properties of the Bloch eigenstates
of our photonic crystal at each of the high symmetry
points k⇤ (�,K, and M) in the Brillouin zone. The
group of symmetry operations Gk⇤ that leaves k⇤ invari-
ant is known as the little group of k⇤; degenerate mul-
tiplets of states at each k⇤ transform under irreducible
representations (irreps) of the group Gk⇤ [68]. Using the

� K M
Trivial A1, E1 A1, E A1, B1, B2

OAL A1, E2 E,A1 B1, A1, B2

Fragile A1, E2 A1, E A1, B1, B2

TABLE I. Little group irreps for the three gapped phases of
our model. Irreps at each k-point are ordered from lowest to
highest energy. Note that while the OAL and Fragile phases
contain the same irreps in the lowest three bands, they di↵er
by a band inversion at K and M .

little group representations given in the Bilbao Crystal-
lographic Server (BCS) [69–71] along with the GTPack
package [72, 73], we compute the representation labels at
each high symmetry point in our photonic band struc-
ture [74]. Using these assignments, we identify three dis-
tinct phases of our model by looking at the irreps of the
lowest three bands (see Table I, and also the SM).
To extract topological information from the represen-

tation labels, recall [18, 56, 59] that for a set of isolated
bands i 2 {1, . . . , N} the symmetry properties of the
Bloch-wave eigenstates  ik(r) at every momentum k in
the Brillouin zone are determined by the transformation
properties of the Wannier functions

wiR(r) ⌘
X

k

e�ik·RUij(k) jk(r). (2)

Here R is a lattice vector, and Uij(k) is an N⇥N unitary
matrix function of k, and represents a choice of “gauge”
for the space spanned by the N -bands. For a topolog-
ically trivial set of bands, the matrix U can be chosen
to make the functions wnR exponentially localized about
some center rn +R. In this case, the Wannier functions
transform in a representation of the space group obtained
by acting with all elements on the space group on a set
of functions at one of the rn. These Wannier functions
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FIG. 2. Wilson loops corresponding to the lowest three in the fragile topological phase. (a) shows the Wilson loop for the
isolated first band. The Wilson loop phase here is pinned to ✓ = 0, a consequence of the C2 eigenvalues of the band. (b) shows
the Wilson loop eigenvalues for the interconnected second and third bands. The Wilson loop spectrum consists of two bands,
which wind in opposite directions from �⇡ to ⇡. As in Ref. [45], this winding is guaranteed by the C2 eigenvalues of the bands,
and indicates their nontrivial topology. (c) shows the Wilson loop for all three bands taken together, which does not display
any winding.

carry a band representation. All band representations
can be obtained as a sum of elementary band representa-
tions (EBRs), which are tabulated in Ref. [75, 76]. Each
EBR is identified by its space group, the Wycko↵ posi-
tion which labels the set rn of centers, and an irrep of the
group Grn which leaves each center invariant (see SM).
Inverting this observation, any set of bands that cannot
be expressed as a sum of EBRs does not admit exponen-
tially localized and symmetric Wannier functions, and is
therefore topological. Note that these considerations ap-
ply equally well to both photonic and electronic crystals.

Using the irrep labels given in Table I, along with the
catalogue of EBRs in the BCS [69–71], we can iden-
tify the band representations describing each phase of
our photonic crystal (See Table II of the SM). With
d1 = 0.52a0, d2 = 0.31a0, we see that the lowest band
carries irrep labels consistent with the band representa-
tion (A1 " G)1a, consisting of photonic Wannier functions
centered at the origin with zero angular momentum (s-
like). Bands two and three are connected to each other,
and are consistent with the (E1 " G)1a band represen-
tation, with a pair of Wannier functions centered at the
origin and transforming like a dipole (p-like). We deem
this the “trivial” phase, as all photonic states can be ex-
pressed in terms of modes localized near the origin. Note
that there are no dielectric rods at the origin, so these
Wannier functions are trapped in a symmetric arrange-
ment of dielectrics surrounding the origin. This structure
is shown in Fig. 1b. Next, with d1 = 0.4a0, d2 = 0.61a0
we see that the first three bands are all interconnected;
taken together, their irrep labels are consistent with s-
like photonic Wannier functions centered on a kagome
lattice (3c position), and transforming in the (A1 " G)3c
band representation. Note that this phase was identified
in Ref. [43] as possessing a nontrivial topological invari-
ant; here we show that this invariant indicates that the

photonic Wannier functions are localized on a kagome
rather than a triangular lattice. In contrast to the trivial
phase, the centers of these Wannier functions lie within
the dielectric rods. In analogy with similar transitions in
electronic materials, we refer to this as the “obstructed
atomic limit” (OAL) phase. This band structure is shown
in Fig. 1c. Finally, when d1 = 0.4a0, d2 = 0.1333a0 we
see that while the lowest band can be described by s-like
Wannier functions at the origin of the unit cell, bands two
and three cannot be expressed as the sum of EBRs. All
three bands taken together, however, contain the same
representations as the (A1 " G)3c band representation in
the OAL phase. This band structure is shown in Fig. 1d.
In the following section, we will show that bands two and
three in this crystal realize fragile topology [45, 46].
To support these conclusions, for each isolated set of

bands we compute the eigenvalues of the Wilson loop

W = Pei
H
A·k, (3)

where A is the Berry connection, P denotes path order-
ing, and the path of integration goes along a primitive
reciprocal lattice vector. As shown in the SM [74], EBRs
from each of the di↵erent Wycko↵ positions in this space
group have qualitatively di↵erent Wilson loop spectra.
Furthermore, the bands in the Wilson loop spectrum for
topologically trivial bands do not cover the entire range
[0, 2⇡] of possible angles, i.e. they do not wind. We see
in Fig. 2a the Wilson loop phase for the lowest band
in the fragile topological phase. The phase is pinned at
� = 0, consistent with a Wannier function centered at
the 1a position. In contrast, the Wilson loop spectrum
for the second and third bands, shown in Fig. 2b, clearly
possesses nontrivial winding. This is a clear indicator of
nontrivial topology.

Fragile Topology. In contrast to a conventional topo-
logical insulator, however, the Wilson loop winding in the
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FIG. 1. (a) Schematic showing the real-space unit cell of the structures studied in this work. a1 and a2 are the real-space
lattice vectors. The centers of the ellipses are fixed at a distance b = a0

3 from the center of the unit cell, a0 being the lattice
constant. d1 and d2 are the lengths of the principal axes of the ellipses. Higher dielectric constant shown in blue. When tiling
this pattern we use the convention that the dielectric function in any blue region is the same, including when ellipses overlap.
b-d) Photonic band structures of three representative examples studied in this work, with little group representations labeled
at the high symmetry points. b) Topologically trivial structure, with d1 = 0.52a0 and d2 = 0.31a0. c) Band structure of a
structure representative of the “obstructed atomic limit” (OAL) phase, with d1 = 0.4a0 and d2 = 0.61a0. d) Topologically
fragile structure, with d1 = 0.4a0 and d2 = 0.13a0.

next distort the rods into ellipses. These ellipses have
their principal axes of length d1 and d2, with d1 oriented
in the direction of the lattice vectors (i.e. pointing to-
wards the center of the unit cell, see Fig. 1a). The sym-
metry group of this crystal is the space group p6mm10

(# 183) [66], generated by the lattice translations, sixfold
rotational symmetry, mirror reflection about the x-axis,
and time-reversal symmetry.

We then computed the band structure for the trans-
verse magnetic (TM) modes in this crystal using the MIT
Photonic Bands package (MPB)[67], given by the spec-
trum of the magnetic wave equation
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for waves with no propagation in the z-direction. "(r) is
the position dependent permittivity, H(r) is the in-plane
magnetic field vector, ! is the frequency and c is the
speed of light. We show representative band structures
for three di↵erent cases in Fig. 1. As we will show below,
there exists a parameter regime where the second and
third bands (counting up from zero energy) are isolated
from the rest of the states in the spectrum and exhibit
fragile topology.

Photonic Band Representations. As a first step in as-
sessing the topology of bands in our photonic crystal,
we will apply the theory of topological quantum chem-
istry [18] to photonic energy bands. First, we examine
the transformation properties of the Bloch eigenstates
of our photonic crystal at each of the high symmetry
points k⇤ (�,K, and M) in the Brillouin zone. The
group of symmetry operations Gk⇤ that leaves k⇤ invari-
ant is known as the little group of k⇤; degenerate mul-
tiplets of states at each k⇤ transform under irreducible
representations (irreps) of the group Gk⇤ [68]. Using the

� K M
Trivial A1, E1 A1, E A1, B1, B2

OAL A1, E2 E,A1 B1, A1, B2

Fragile A1, E2 A1, E A1, B1, B2

TABLE I. Little group irreps for the three gapped phases of
our model. Irreps at each k-point are ordered from lowest to
highest energy. Note that while the OAL and Fragile phases
contain the same irreps in the lowest three bands, they di↵er
by a band inversion at K and M .

little group representations given in the Bilbao Crystal-
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package [72, 73], we compute the representation labels at
each high symmetry point in our photonic band struc-
ture [74]. Using these assignments, we identify three dis-
tinct phases of our model by looking at the irreps of the
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To extract topological information from the represen-

tation labels, recall [18, 56, 59] that for a set of isolated
bands i 2 {1, . . . , N} the symmetry properties of the
Bloch-wave eigenstates  ik(r) at every momentum k in
the Brillouin zone are determined by the transformation
properties of the Wannier functions
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Here R is a lattice vector, and Uij(k) is an N⇥N unitary
matrix function of k, and represents a choice of “gauge”
for the space spanned by the N -bands. For a topolog-
ically trivial set of bands, the matrix U can be chosen
to make the functions wnR exponentially localized about
some center rn +R. In this case, the Wannier functions
transform in a representation of the space group obtained
by acting with all elements on the space group on a set
of functions at one of the rn. These Wannier functions
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FIG. 2. Wilson loops corresponding to the lowest three in the fragile topological phase. (a) shows the Wilson loop for the
isolated first band. The Wilson loop phase here is pinned to ✓ = 0, a consequence of the C2 eigenvalues of the band. (b) shows
the Wilson loop eigenvalues for the interconnected second and third bands. The Wilson loop spectrum consists of two bands,
which wind in opposite directions from �⇡ to ⇡. As in Ref. [45], this winding is guaranteed by the C2 eigenvalues of the bands,
and indicates their nontrivial topology. (c) shows the Wilson loop for all three bands taken together, which does not display
any winding.
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can be obtained as a sum of elementary band representa-
tions (EBRs), which are tabulated in Ref. [75, 76]. Each
EBR is identified by its space group, the Wycko↵ posi-
tion which labels the set rn of centers, and an irrep of the
group Grn which leaves each center invariant (see SM).
Inverting this observation, any set of bands that cannot
be expressed as a sum of EBRs does not admit exponen-
tially localized and symmetric Wannier functions, and is
therefore topological. Note that these considerations ap-
ply equally well to both photonic and electronic crystals.

Using the irrep labels given in Table I, along with the
catalogue of EBRs in the BCS [69–71], we can iden-
tify the band representations describing each phase of
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d1 = 0.52a0, d2 = 0.31a0, we see that the lowest band
carries irrep labels consistent with the band representa-
tion (A1 " G)1a, consisting of photonic Wannier functions
centered at the origin with zero angular momentum (s-
like). Bands two and three are connected to each other,
and are consistent with the (E1 " G)1a band represen-
tation, with a pair of Wannier functions centered at the
origin and transforming like a dipole (p-like). We deem
this the “trivial” phase, as all photonic states can be ex-
pressed in terms of modes localized near the origin. Note
that there are no dielectric rods at the origin, so these
Wannier functions are trapped in a symmetric arrange-
ment of dielectrics surrounding the origin. This structure
is shown in Fig. 1b. Next, with d1 = 0.4a0, d2 = 0.61a0
we see that the first three bands are all interconnected;
taken together, their irrep labels are consistent with s-
like photonic Wannier functions centered on a kagome
lattice (3c position), and transforming in the (A1 " G)3c
band representation. Note that this phase was identified
in Ref. [43] as possessing a nontrivial topological invari-
ant; here we show that this invariant indicates that the
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rather than a triangular lattice. In contrast to the trivial
phase, the centers of these Wannier functions lie within
the dielectric rods. In analogy with similar transitions in
electronic materials, we refer to this as the “obstructed
atomic limit” (OAL) phase. This band structure is shown
in Fig. 1c. Finally, when d1 = 0.4a0, d2 = 0.1333a0 we
see that while the lowest band can be described by s-like
Wannier functions at the origin of the unit cell, bands two
and three cannot be expressed as the sum of EBRs. All
three bands taken together, however, contain the same
representations as the (A1 " G)3c band representation in
the OAL phase. This band structure is shown in Fig. 1d.
In the following section, we will show that bands two and
three in this crystal realize fragile topology [45, 46].
To support these conclusions, for each isolated set of
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where A is the Berry connection, P denotes path order-
ing, and the path of integration goes along a primitive
reciprocal lattice vector. As shown in the SM [74], EBRs
from each of the di↵erent Wycko↵ positions in this space
group have qualitatively di↵erent Wilson loop spectra.
Furthermore, the bands in the Wilson loop spectrum for
topologically trivial bands do not cover the entire range
[0, 2⇡] of possible angles, i.e. they do not wind. We see
in Fig. 2a the Wilson loop phase for the lowest band
in the fragile topological phase. The phase is pinned at
� = 0, consistent with a Wannier function centered at
the 1a position. In contrast, the Wilson loop spectrum
for the second and third bands, shown in Fig. 2b, clearly
possesses nontrivial winding. This is a clear indicator of
nontrivial topology.

Fragile Topology. In contrast to a conventional topo-
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- We can claim we have understood band topology very deeply 

- Topology was unknown but not a rarity 

- High throughput searches for magnetic and non-magnetic materials

Band Topology
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Summary and conclusions


