

Light-matter interaction in 2D from first-principles

R. Reho, P. M. M. C. de Melo , A. R. Botello-Méndez, A. Botello Méndez , M. Verstraete, D. Vanmaekelbergh, and Z. Zanolli

Debye Institute for Nanomaterials Science, Utrecht University

<u>r.reho@uu.nl</u>

QuMat 2023 Yearly meeting, Nijmegen, October 25, 2023

Controlling Quantum Materials

To develop quantum technology it is necessary to control/tune QM properties

Light allows easy access to the core material properties

Light Generates Probes Controls Interacts with excited states in matter

Theory & Simulations for a simultaneous quantum treatment of light, lattice vibrations & electron-hole bound pairs

Courtesy of: M. Verstraete

Exciton Physics in 2D: light-matter interaction

- 2D: Direct gap
- High Spin-Orbit Coupling
- Valley selective optical spin pumping

Applications in

- Spintronics/Valleytronics
- Optoelectronics
- Photovoltaics
- Quantum information
- Tune their properties with
- Strain
- Alignment/Twisting of HS

The Density Functional Theory perspective

Quantum Many-Body Problem

GW: interacting electrons via dynamical screened Coulomb interaction W(r, r', ω)

Experiments: ARPES, STS, ...

Bethe-Salpeter Eq. on top of GW => calculate neutral excitations

$$E_{binding} = \Delta E_{cv} - E_{exc}$$

Experiment: Light Absorption

Outline: Exciton physics in

TMDs MLs

vdW HS: MoS₂/WS₂ MoSe₂/WSe₂

Strain effect on optical absorption

High energy excitations in 6QL Bi_2Se_3 Se Bi MoS₂

Absorption spectra: monolayers

Dependence of exciton energy on :

- Structrural relaxation

- Pseudpototentials: full semi-core states (s, p, d)
- Exchange correlation functional

 \rightarrow Necessary accurate convergence:

Otherwise one gets unphysical results:

- indirect gap MLs
- wrong exciton energy

1.8

2.2

2.0

Outline: Exciton physics in

TMDs MLs

vdW HS: MoS₂/WS₂ MoSe₂/WSe₂

Strain effect on optical absorption

High energy excitations in 6QL Bi₂Se₃

) Se 🛛 🔵 Bi

MoS₂/WS₂AA' stacking

WS₂

MoSa

Energy shift INtralayer exciton w.r.t to the isolated case

New emerging features: InterLayer exciton

- electron and hole spatially separated
- visible in PL

MoS₂/WS₂ different stacking

- Suppression of IN(WS₂) exciton for AB
- Characterization of HS stacking

MoSe₂/WSe₂AA Twisted

Excitonic features in twisted HS

MoSe₂/WSe₂

Complex excitonic features in twisted HS:

- Moiré significantly alters the optical properties of the material
- InterLayer exciton (\sim 1.3 eV) disappears
- IN-Plane 'mixed' from MoSe₂ & WSe₂ layers
- Two IN-Plane excitons in MoSe₂ layers

Outline: Exciton physics in

TMDs MLs

vdW HS: MoS₂/WS₂ MoSe₂/WSe₂

Strain effect on optical absorption

High energy excitations in 6QL Bi₂Se₃

Se Bi

Wannier-TB

⊗ DFT+GW+BSE for large systems is computationally expensive

Image: Solve Wappier TD model Liewitzerien L DCL

Solve Wannier-TB model Hamiltonian + BSE using a semi-empirical Coulomb potential (eg. Rytova-Keldysh)

Tuning exciton energy by strain

A and B Exciton energies

- decrease for positive strain
- increase for negative strain

Same behaviour

- for TMDs ML: WS₂, MoSe₂, WSe₂
- for TMD heterostructures:
 MoS₂/WS₂ MoSe₂/WSe₂

Outline: Exciton physics in

TMDs MLs

vdWHS: MoS₂/WS₂I..oSe₂/WSe₂

Strain effect on optical absorption

High energy excitations in 6QL Bi₂Se₃ Se Bi

Effect of 3D \rightarrow 2D transition

Crystal structure

Rhombohedral ($R\overline{3}m$) vdW stacking

Topology

Bulk Bi_2Se_3 : topological gap ~300 meV

2D :Topological \geq 4 QLs STM, GW-TB, 8-bands k·p

J. R. Moes et al. (2023)

Talk pillar 1 updates & L. Licéran

Optics

High energy excitations:

- Preserved circular polarization
- Surface-to-surface transition
- e-h dissociation in BZ by e-cooling
- Fast e-h recombination

J. Vliem , R. Reho et al. in preparation (2024)

High-energy excitations in bulk Bi₂Se₃

chiral excitons

surface e⁻ and hole Strong SOC Locking spin-momentum

15K

x3

 $I_{RR}(\omega,T)$

 $I_{RL}(\omega,T)$

40

 $f(\omega,T)$

SS = Surface State RSS = Rashba Surface State

Blueshift of the D peak

Surface to surface transition

M. Fang et al. Appl. Phys. Lett. **118** (2021)

H. -H. Kung et al. PNAS, vol. **116** (2019)

6QL Bi₂Se₃: electronic and optical properties

Conclusions

Controlling **TMDs** properties via:

- Vertical and Lateral straining
- HeteroStructure alignement & twisting

Bi₂Se₃

- composite chiral exciton
- interesting and non-trivial light-matter conversion excitations
 - ightarrow microscopic description of the system
- Control cooling, lifetimes of transitions with the number of layers

r.reho@uu.nl

SURF SARA

First-principles Real Time Dynamics

- Beyond ground state to catch many-body physics (GW)
- BSE to describe excitons/absorption
- Electron & Hole **real time dynamics** driven by electron-phonon interaction to describe emission (PL)

PL, pump & probe exp., non-linear optics, with Time & Temperature dependence Yambo.

D. Sangalli *et al.* J Phys. Condens. Matter 2019 Melo & Marini, PRB 2016; EPL 2017 Marini *et al* Comput. Phys. Comm. 2009

Time-Dependent Dynamics

Beyond exciton physics at equal times: Coupling with EM field

D: Photon propagator

P: Transverse photon polarization

 $\mathbf{p}_{\mathbf{e}}$: Longitudinal polarization

Equation of motion for $L^{<}$:

 $\mathcal{L}^{<}_{\mathsf{T}}(\boldsymbol{\omega}) = [1 - \mathsf{L}^{\mathsf{o},\mathsf{r}}(\boldsymbol{\omega})K]^{-1} \mathsf{L}^{\mathsf{o}<}_{\mathsf{T}'}(\boldsymbol{\omega})[1 - K\mathsf{L}^{0,\mathsf{a}}(\boldsymbol{\omega})]^{-1}_{\mathsf{T}'\mathsf{T}''}\Pi_{\mathsf{T}''}$ propagation filtering excitation

- K : e⁻-e⁻ collisions: common ingredient in real time simulations.
 e⁻-phonon: Renormalization of the energies and introduces a decay channel. Optional: exciton-phonon term
 e⁻-photon: interaction with light gives absorption (GW+BSE)
- L^{o<}: Independent-particle response function, Residuals
- Π : Dipoles matrix elements

Photoluminescence Workflow

