Light-Driven Control of Spin-Wave Damping in an Antiferromagnet

Viktoriia Radovskaia

Radboud University, Nijmegen

Light-driven spin precessions in Antiferromagnets

Antiferromagnetic magnonics

- High frequencies (> 1 THz)
- High group velocities (> 10 km/s)
- Non-dispersive propagation

Hortensius, J.R., et. al. Nat. Phys. 17, 1001–1006 (2021) Madami, M. et al. Nature Nanotech 6, 635–638 (2011) Afanasiev, D. et al. Nat. Mater. 20, 607–611 (2021) Němec, P. et al. Nature Phys 14, 229–241 (2018)

Dynamic control of spin-wave properties

E. A. Mashkovich, et.al. Science 374, 1608–1611 (2021) Mikhaylovskiy, R., et al. Nat Commun 6, 8190 (2015) Sebastian F. Maehrlein et al. Sci. Adv.4, eaar5164(2018) Kimel, A., et al. Nature 435, 655–657 (2005) Afanasiev D, et. al.. Nat. Mater. 20, 607–611 (2021) Qiu, JX., et al. Nat. Mater. 22, 583–590 (2023) D. Bossini, et. al. ACS Photonics 2016 3 (8), 1385-1400

- Phase
- Amplitude
- Frequency
- Lifetime (damping α) 3

Importance of the spin-wave damping: low and high

Propagation:

- a lifetime: τ_{coh}
- a propagation length: l_{coh}

Switching:

•
$$\tau = (\Delta \omega)^{-1} \sim (\alpha/f_0)^{-1}$$

 α – damping parameter f_0 – frequency

High damping:

for reliable switching of the system

Low damping:

for long-living coherent precessions

Origin of the spin-wave damping

- two-magnon scattering
- three/four magnon interaction
- magnon-phonon scattering
- electron-magnon scattering

P. Pirro et. al. Nat. Rev. Mater. **6,** 1114–1135 (2021) M.M.H. Polash et.al. J. Mater. Chem. C, 2020,8, 4049-4057

Damping is a many-body interaction process!

Many body magnon scattering platform with ultrashort laser pulses

Detection of uniform and propagating excitations

Jitrashort laser pulse (to create many-body excitation)

Birefringence of light, $\Delta \theta_B$

 $k = 2k_0$

Transmission: k = 0

• uniform magnon

Reflection: $k \neq 0$

- propagating magnons
- propagating phonons

Magnon&Phonon excitation in a time domain

 Δt (ps)

Giant damping of k=0 magnon

9

Control of damping of uniform spin precession by the pump photon energy

Coherent spin-waves with on-demand damping

Coherent spin-waves with on-demand damping

Asymmetric spectral weight transfer

•
$$f_{magn} = \sqrt{f_o^2 + (vk)^2}$$

• f_0 - spin-wave gap

Asymmetric spectral weight transfer

Asymmetric spectral weight transfer

15

Magnon-phonon scattering scenario

$$\omega_{\rm ph}$$

Conservation of momentum and energy:

 $k_1 + k_{ph} = k_2$ $\omega_1 + \omega_{ph} = \omega_2$

Fulfilled only if:

$$k_1 \le k_0 = 1.54 * 10^5 cm^{-3}$$

High-amplitude induced nonlinearity

High-amplitude induced nonlinearity

All the light fluence is absorbed in a narrow skin-depth layer ~ 50 nm !!!

~ 30 deg spin deflection

Conclusions

 An ultrashort optical excitation of insulating antiferromagnets may lead to a broadband population of quasiparticles with many-body interaction (e.g electron-hole pairs, magnons, phonons)

 In AFM DyFeO3, the many-body optical excitation manifests as a giant renormalization of the damping of uniform spin precession.

Optical excitation of spin-waves with a damping on-demand!

Acknowledgements

- Dr. Dima Afanasiev
- Prof. Alexey Kimel
- Boris Ivanov

- Jorrit Hortensius
- Mattias Matthiesen
- Andrea Caviglia

- Radu Andrei
- Eugene Demler

• Rostislav Mikhaylovskiy

• Roberta Citro

Thank you for your attention!